Eur J Pediatr Surg 2018; 28(01): 034-038
DOI: 10.1055/s-0037-1604427
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Advantages of Cardiac Magnetic Resonance Imaging for Severe Pectus Excavatum Assessment in Children

Mariela Dore
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Paloma Triana Junco
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Monserrat Bret
2   Department of Pediatric Radiology, Hospital Universitario La Paz, Madrid, Spain
,
Manuel Gomez Cervantes
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Martha Muñoz Romo
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Javier Jimenez Gomez
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Ana Perez Vigara
2   Department of Pediatric Radiology, Hospital Universitario La Paz, Madrid, Spain
,
Manuel Parron Pajares
2   Department of Pediatric Radiology, Hospital Universitario La Paz, Madrid, Spain
,
Jose Luis Encinas
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Francisco Hernandez
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Leopoldo Martinez
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Manuel Lopez Santamaria
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
,
Carlos De La Torre
1   Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
› Author Affiliations
Further Information

Publication History

18 April 2017

21 June 2017

Publication Date:
31 July 2017 (online)

Abstract

Aim Cardiac function can be impaired in patients with pectus excavatum (PE) due to anatomic and dynamic compression of the heart. Efforts for radiation dose reduction in imaging techniques have allowed cardiac magnetic resonance imaging (c-MRI) to play a major role in PE assessment. The aim of our study is to describe the findings of c-MRI 18 months after we changed the PE assessment protocol from chest computed tomography to c-MRI.

Patients and Methods Since mid-2015 all patients with severe PE (suspected Haller's index > 3.2) were assessed with inspiratory and expiratory c-MRI. A retrospective analysis of these patients was performed evaluating the following parameters: (1) Radiologic PE indexes (Haller's, correction and asymmetry indexes; and sternal rotation) and (2) cardiac function (including left and right ventricle ejection fraction).

Results A total of 20 patients met the inclusion criteria. Dynamic imaging showed a significant difference during inspiration and expiration of the Haller's index 3.85 (range: 3.17–7.3) versus 5.10 (range: 3.85–10.8) (p < 0.05), and correction index (26.86% vs. 36.84%, respectively, p < 0.05). The sternal rotation was 14.5 (range: 0–36). c-MRI analysis disclosed a right ventricle ejection fraction of 50.3%. (normal range: 61% [54–71%]). Echocardiographic imaging underestimated the functional repercussion of PE in all patients.

Conclusion Initial results show that PE assessment by c-MRI allows a radiation-free image of the chest wall deformity during the entire breathing process. Also, it permitted the evaluation of the influence of sternum impingement on cardiac function. These findings allowed us a careful surgical evaluation and preoperative planning.

 
  • References

  • 1 Lo Piccolo R, Bongini U, Basile M. , et al. Chest fast MRI: an imaging alternative on pre-operative evaluation of pectus excavatum. J Pediatr Surg 2012; 47 (03) 485-489
  • 2 Sarwar ZU, DeFlorio R, O'Connor SC. Pectus excavatum: current imaging techniques and opportunities for dose reduction. Semin Ultrasound CT MR 2014; 35 (04) 374-381
  • 3 Lollert A, Funk J, Tietze N. , et al. Morphologic assessment of thoracic deformities for the preoperative evaluation of pectus excavatum by magnetic resonance imaging. Eur Radiol 2015; 25 (03) 785-791
  • 4 Nuss D, Obermeyer RJ, Kelly Jr RE. Pectus excavatum from a pediatric surgeon's perspective. Ann Cardiothorac Surg 2016; 5 (05) 493-500
  • 5 Huddleston CB. Pectus excavatum. Semin Thorac Cardiovasc Surg 2004; 16 (03) 225-232
  • 6 Nuss D, Kelly Jr RE. Indications and technique of Nuss procedure for pectus excavatum. Thorac Surg Clin 2010; 20 (04) 583-597
  • 7 Jaroszewski DE. Physiologic implications of pectus excavatum. J Thorac Cardiovasc Surg 2017; 153 (01) 218-219
  • 8 Sigalet DL, Montgomery M, Harder J, Wong V, Kravarusic D, Alassiri A. Long term cardiopulmonary effects of closed repair of pectus excavatum. Pediatr Surg Int 2007; 23 (05) 493-497
  • 9 Lawson ML, Barnes-Eley M, Burke BL. , et al. Reliability of a standardized protocol to calculate cross-sectional chest area and severity indices to evaluate pectus excavatum. J Pediatr Surg 2006; 41 (07) 1219-1225
  • 10 Chao C-J, Jaroszewski DE, Kumar PN. , et al. Surgical repair of pectus excavatum relieves right heart chamber compression and improves cardiac output in adult patients--an intraoperative transesophageal echocardiographic study. Am J Surg 2015; 210 (06) 1118-1124 , discussion 1124–1125
  • 11 Jayaramakrishnan K, Wotton R, Bradley A, Naidu B. Does repair of pectus excavatum improve cardiopulmonary function?. Interact Cardiovasc Thorac Surg 2013; 16 (06) 865-870
  • 12 O'Keefe J, Byrne R, Montgomery M, Harder J, Roberts D, Sigalet DL. Longer term effects of closed repair of pectus excavatum on cardiopulmonary status. J Pediatr Surg 2013; 48 (05) 1049-1054
  • 13 Obermeyer RJ, Goretsky MJ. Chest wall deformities in pediatric surgery. Surg Clin North Am 2012; 92 (03) 669-684
  • 14 Töpper A, Polleichtner S, Zagrosek A. , et al. Impact of surgical correction of pectus excavatum on cardiac function: insights on the right ventricle. A cardiovascular magnetic resonance study†. Interact Cardiovasc Thorac Surg 2016; 22 (01) 38-46
  • 15 Narayan RL, Vaishnava P, Castellano JM, Fuster V. Quantitative assessment of right ventricular function in pectus excavatum. J Thorac Cardiovasc Surg 2012; 143 (05) e41-e42
  • 16 Raggio IM, Munin M, Spernanzoni F. , et al. Causes of exercise intolerance in pectus excavatum. Rev Argent Cardiol 2016; 84: 543-547
  • 17 Saleh RS, Finn JP, Fenchel M. , et al. Cardiovascular magnetic resonance in patients with pectus excavatum compared with normal controls. J Cardiovasc Magn Reson 2010; 12 (01) 73
  • 18 Marcovici PA, LoSasso BE, Kruk P, Dwek JR. MRI for the evaluation of pectus excavatum. Pediatr Radiol 2011; 41 (06) 757-758
  • 19 Birkemeier KL, Podberesky DJ, Salisbury S, Serai S. Limited, fast magnetic resonance imaging as an alternative for preoperative evaluation of pectus excavatum: a feasibility study. J Thorac Imaging 2012; 27 (06) 393-397
  • 20 Humphries CM, Anderson JL, Flores JH, Doty JR. Cardiac magnetic resonance imaging for perioperative evaluation of sternal eversion for pectus excavatum. Eur J Cardiothorac Surg 2013; 43 (06) 1110-1113
  • 21 Haller Jr JA, Kramer SS, Lietman SA. Use of CT scans in selection of patients for pectus excavatum surgery: a preliminary report. J Pediatr Surg 1987; 22 (10) 904-906
  • 22 Abdullah F, Harris J. Pectus excavatum: more than a matter of aesthetics. Pediatr Ann 2016; 45 (11) e403-e406
  • 23 Albertal M, Vallejos J, Bellia G. , et al. Changes in chest compression indexes with breathing underestimate surgical candidacy in patients with pectus excavatum: a computed tomography pilot study. J Pediatr Surg 2013; 48 (10) 2011-2016
  • 24 Birkemeier KL, Podberesky DJ, Salisbury S, Serai S. Breathe in... breathe out... stop breathing: does phase of respiration affect the Haller index in patients with pectus excavatum?. Am J Roentgenol 2011; 197 (05) W934-9
  • 25 Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER. , et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson 2015; 17 (01) 29
  • 26 Deviggiano A, Vallejos J, Vina N. , et al. Exaggerated interventricular dependence among patients with pectus excavatum: combined assessment with cardiac MRI and chest CT. Am J Roentgenol 2017; 208 (04) 854-861