RSS-Feed abonnieren
DOI: 10.1055/s-0037-1607265
Activin A in Inflammation, Tissue Repair, and Fibrosis: Possible Role as Inflammatory and Fibrotic Mediator of Uterine Fibroid Development and Growth
Publikationsverlauf
Publikationsdatum:
03. November 2017 (online)
Abstract
The growth factor activin A belongs to the transforming growth factor-β superfamily and was initially isolated as an inducer of follicle-stimulating hormone secretion. Activin A was later found to play roles in cell proliferation, differentiation, apoptosis, and metabolism. More recently, activin A has also been recognized as a novel player in mediating inflammation, immunity, wound repair, and fibrosis. Elevated levels of activin A during inflammation are responsible for the increased production of extracellular matrix in different pathological conditions, including fibroids. Our group has demonstrated a profibrotic role of activin A in leiomyoma growth. Uterine leiomyoma can be considered as a fibrotic disorder that initiates from myometrial smooth muscle layer of uterus in reproductive-age women and that is driven by a strong inflammatory component. In fertile women, transient inflammation is a physiological and essential process during menstruation, ovulation, and parturition. However, tissue injury from extravasated menstrual blood and/or an altered response to harmful stimuli, such as pathogens, damaged cells, or irritants, can establish chronic inflammation in the uterus, ultimately leading to dysregulated tissue repair. Myofibroblasts are key cells in normal repair and the chronic tissue remodeling characteristic for fibrosis and uterine leiomyoma. In this review, we discuss the role of activin A in inflammation, tissue repair, and fibrosis and we elaborate the hypothesis that it plays a central role in myofibroblast activation and leiomyoma development and growth.
-
References
- 1 Vale W, Rivier J, Vaughan J. , et al. Purification and characterization of an FSH releasing protein from porcine ovarian follicular fluid. Nature 1986; 321 (6072): 776-779
- 2 Heldin CH, Miyazono K, ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390 (6659): 465-471
- 3 Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003; 113 (06) 685-700
- 4 Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425 (6958): 577-584
- 5 Tsuchida K, Arai KY, Kuramoto Y, Yamakawa N, Hasegawa Y, Sugino H. Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. J Biol Chem 2000; 275 (52) 40788-40796
- 6 Hill JJ, Davies MV, Pearson AA. , et al. The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 2002; 277 (43) 40735-40741
- 7 Bilezikjian LM, Corrigan AZ, Blount AL, Chen Y, Vale WW. Regulation and actions of Smad7 in the modulation of activin, inhibin, and transforming growth factor-beta signaling in anterior pituitary cells. Endocrinology 2001; 142 (03) 1065-1072
- 8 Hanyu A, Ishidou Y, Ebisawa T, Shimanuki T, Imamura T, Miyazono K. The N domain of Smad7 is essential for specific inhibition of transforming growth factor-beta signaling. J Cell Biol 2001; 155 (06) 1017-1027
- 9 Mochizuki T, Miyazaki H, Hara T. , et al. Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling. J Biol Chem 2004; 279 (30) 31568-31574
- 10 Kelber JA, Shani G, Booker EC, Vale WW, Gray PC. Cripto is a noncompetitive activin antagonist that forms analogous signaling complexes with activin and nodal. J Biol Chem 2008; 283 (08) 4490-4500
- 11 Ciarmela P, Bloise E, Gray PC. , et al. Activin-A and myostatin response and steroid regulation in human myometrium: disruption of their signalling in uterine fibroid. J Clin Endocrinol Metab 2011; 96 (03) 755-765
- 12 Yan X, Lin Z, Chen F. , et al. Human BAMBI cooperates with Smad7 to inhibit transforming growth factor-beta signaling. J Biol Chem 2009; 284 (44) 30097-30104
- 13 Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci U S A 2001; 98 (03) 974-979
- 14 Suzuki H, Yagi K, Kondo M, Kato M, Miyazono K, Miyazawa K. c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene 2004; 23 (29) 5068-5076
- 15 Stroschein SL, Wang W, Zhou S, Zhou Q, Luo K. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 1999; 286 (5440): 771-774
- 16 Nishihara A, Hanai J, Imamura T, Miyazono K, Kawabata M. E1A inhibits transforming growth factor-beta signaling through binding to Smad proteins. J Biol Chem 1999; 274 (40) 28716-28723
- 17 Wotton D, Lo RS, Lee S, Massagué J. A Smad transcriptional corepressor. Cell 1999; 97 (01) 29-39
- 18 Kim RH, Wang D, Tsang M. , et al. A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction. Genes Dev 2000; 14 (13) 1605-1616
- 19 Verschueren K, Remacle JE, Collart C. , et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 1999; 274 (29) 20489-20498
- 20 Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev 2003; 83 (03) 835-870
- 21 Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol 2007; 127 (03) 514-525
- 22 Shaw TJ, Martin P. Wound repair at a glance. J Cell Sci 2009; 122 (Pt 18): 3209-3213
- 23 Bennett JS. Platelet-fibrinogen interactions. Ann N Y Acad Sci 2001; 936: 340-354
- 24 Clemetson KJ, Clemetson JM. Platelet receptor signalling. Hematol J 2004; 5 (Suppl. 03) S159-S163
- 25 Bennett JS, Berger BW, Billings PC. The structure and function of platelet integrins. J Thromb Haemost 2009; 7 (Suppl. 01) 200-205
- 26 Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med 2010; 28 (03) 180-203
- 27 Phillips DJ, Jones KL, Scheerlinck JY, Hedger MP, de Kretser DM. Evidence for activin A and follistatin involvement in the systemic inflammatory response. Mol Cell Endocrinol 2001; 180 (1-2): 155-162
- 28 Phillips DJ, Nguyen P, Adamides AA. , et al. Activin a release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J Neurotrauma 2006; 23 (09) 1283-1294
- 29 Ebert S, Phillips DJ, Jenzewski P, Nau R, O'Connor AE, Michel U. Activin A concentrations in human cerebrospinal fluid are age-dependent and elevated in meningitis. J Neurol Sci 2006; 250 (1-2): 50-57
- 30 Smith C, Yndestad A, Halvorsen B. , et al. Potential anti-inflammatory role of activin A in acute coronary syndromes. J Am Coll Cardiol 2004; 44 (02) 369-375
- 31 Hübner G, Brauchle M, Gregor M, Werner S. Activin A: a novel player and inflammatory marker in inflammatory bowel disease?. Lab Invest 1997; 77 (04) 311-318
- 32 McLean CA, Cleland H, Moncrieff NJ, Barton RJ, de Kretser DM, Phillips DJ. Temporal expression of activin in acute burn wounds--from inflammatory cells to fibroblasts. Burns 2008; 34 (01) 50-55
- 33 Karagiannidis C, Hense G, Martin C. , et al. Activin A is an acute allergen-responsive cytokine and provides a link to TGF-beta-mediated airway remodeling in asthma. J Allergy Clin Immunol 2006; 117 (01) 111-118
- 34 Wohlfahrt JG, Kunzmann S, Menz G. , et al. T cell phenotype in allergic asthma and atopic dermatitis. Int Arch Allergy Immunol 2003; 131 (04) 272-282
- 35 Ota F, Maeshima A, Yamashita S. , et al. Activin A induces cell proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum 2003; 48 (09) 2442-2449
- 36 Tannetta DS, Muttukrishna S, Groome NP, Redman CW, Sargent IL. Endothelial cells and peripheral blood mononuclear cells are a potential source of extraplacental activin a in preeclampsia. J Clin Endocrinol Metab 2003; 88 (12) 5995-6001
- 37 Michel U, Ebert S, Phillips D, Nau R. Serum concentrations of activin and follistatin are elevated and run in parallel in patients with septicemia. Eur J Endocrinol 2003; 148 (05) 559-564
- 38 Werner S, Alzheimer C. Roles of activin in tissue repair, fibrosis, and inflammatory disease. Cytokine Growth Factor Rev 2006; 17 (03) 157-171
- 39 Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124 (04) 783-801
- 40 Yang D, Oppenheim JJ. Antimicrobial proteins act as “alarmins” in joint immune defense. Arthritis Rheum 2004; 50 (11) 3401-3403
- 41 Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003; 21: 335-376
- 42 Yamazaki T, Hannani D, Poirier-Colame V. , et al. Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 2014; 21 (01) 69-78
- 43 Jones KL, Brauman JN, Groome NP, de Kretser DM, Phillips DJ. Activin A release into the circulation is an early event in systemic inflammation and precedes the release of follistatin. Endocrinology 2000; 141 (05) 1905-1908
- 44 Phillips DJ, de Kretser DM, Hedger MP. Activin and related proteins in inflammation: not just interested bystanders. Cytokine Growth Factor Rev 2009; 20 (02) 153-164
- 45 Erämaa M, Hurme M, Stenman UH, Ritvos O. Activin A/erythroid differentiation factor is induced during human monocyte activation. J Exp Med 1992; 176 (05) 1449-1452
- 46 Wang SY, Tai GX, Zhang PY, Mu DP, Zhang XJ, Liu ZH. Inhibitory effect of activin A on activation of lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Cytokine 2008; 42 (01) 85-91
- 47 Robson NC, Phillips DJ, McAlpine T. , et al. Activin-A: a novel dendritic cell-derived cytokine that potently attenuates CD40 ligand-specific cytokine and chemokine production. Blood 2008; 111 (05) 2733-2743
- 48 Wilson KM, Smith AI, Phillips DJ. Stimulatory effects of lipopolysaccharide on endothelial cell activin and follistatin. Mol Cell Endocrinol 2006; 253 (1-2): 30-35
- 49 Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 2012; 18 (07) 1028-1040
- 50 Duffield JS, Lupher M, Thannickal VJ, Wynn TA. Host responses in tissue repair and fibrosis. Annu Rev Pathol 2013; 8: 241-276
- 51 Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 2014; 20 (08) 857-869
- 52 Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol 2008; 214 (02) 199-210
- 53 Hinz B, Phan SH, Thannickal VJ. , et al. Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 2012; 180 (04) 1340-1355
- 54 Eckes B, Zweers MC, Zhang ZG. , et al. Mechanical tension and integrin alpha 2 beta 1 regulate fibroblast functions. J Investig Dermatol Symp Proc 2006; 11 (01) 66-72
- 55 Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007; 117 (03) 524-529
- 56 Schiller M, Javelaud D, Mauviel A. TGF-beta-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J Dermatol Sci 2004; 35 (02) 83-92
- 57 Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005; 115 (02) 209-218
- 58 Takahashi S, Uchimaru K, Harigaya K, Asano S, Yamashita T. Tumor necrosis factor and interleukin-1 induce activin A gene expression in a human bone marrow stromal cell line. Biochem Biophys Res Commun 1992; 188 (01) 310-317
- 59 Shao L, Frigon Jr NL, Sehy DW. , et al. Regulation of production of activin A in human marrow stromal cells and monocytes. Exp Hematol 1992; 20 (10) 1235-1242
- 60 Shao LE, Frigon Jr NL, Yu A, Palyash J, Yu J. Contrasting effects of inflammatory cytokines and glucocorticoids on the production of activin A in human marrow stromal cells and their implications. Cytokine 1998; 10 (03) 227-235
- 61 Hardy CL, Lemasurier JS, Olsson F. , et al. Interleukin-13 regulates secretion of the tumor growth factor-β superfamily cytokine activin A in allergic airway inflammation. Am J Respir Cell Mol Biol 2010; 42 (06) 667-675
- 62 Pawlowski JE, Taylor DS, Valentine M. , et al. Stimulation of activin A expression in rat aortic smooth muscle cells by thrombin and angiotensin II correlates with neointimal formation in vivo. J Clin Invest 1997; 100 (03) 639-648
- 63 Hübner G, Werner S. Serum growth factors and proinflammatory cytokines are potent inducers of activin expression in cultured fibroblasts and keratinocytes. Exp Cell Res 1996; 228 (01) 106-113
- 64 Aoki F, Kurabayashi M, Hasegawa Y, Kojima I. Attenuation of bleomycin-induced pulmonary fibrosis by follistatin. Am J Respir Crit Care Med 2005; 172 (06) 713-720
- 65 Karger A, Fitzner B, Brock P. , et al. Molecular insights into connective tissue growth factor action in rat pancreatic stellate cells. Cell Signal 2008; 20 (10) 1865-1872
- 66 Yamashita S, Maeshima A, Kojima I, Nojima Y. Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol 2004; 15 (01) 91-101
- 67 Yndestad A, Ueland T, Øie E. , et al. Elevated levels of activin A in heart failure: potential role in myocardial remodeling. Circulation 2004; 109 (11) 1379-1385
- 68 Murakami M, Ikeda T, Saito T. , et al. Transcriptional regulation of plasminogen activator inhibitor-1 by transforming growth factor-beta, activin A and microphthalmia-associated transcription factor. Cell Signal 2006; 18 (02) 256-265
- 69 Hübner G, Hu Q, Smola H, Werner S. Strong induction of activin expression after injury suggests an important role of activin in wound repair. Dev Biol 1996; 173 (02) 490-498
- 70 Munz B, Smola H, Engelhardt F. , et al. Overexpression of activin A in the skin of transgenic mice reveals new activities of activin in epidermal morphogenesis, dermal fibrosis and wound repair. EMBO J 1999; 18 (19) 5205-5215
- 71 Wankell M, Munz B, Hübner G. , et al. Impaired wound healing in transgenic mice overexpressing the activin antagonist follistatin in the epidermis. EMBO J 2001; 20 (19) 5361-5372
- 72 Sun X, Kim YH, Phan TN, Yang BS. Topical application of ALK5 inhibitor A-83-01 reduces burn wound contraction in rats by suppressing myofibroblast population. Biosci Biotechnol Biochem 2014; 78 (11) 1805-1812
- 73 Fumagalli M, Musso T, Vermi W. , et al. Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin. Exp Dermatol 2007; 16 (07) 600-610
- 74 Mukhopadhyay A, Chan SY, Lim IJ, Phillips DJ, Phan TT. The role of the activin system in keloid pathogenesis. Am J Physiol Cell Physiol 2007; 292 (04) C1331-C1338
- 75 Engelse MA, Neele JM, van Achterberg TA. , et al. Human activin-A is expressed in the atherosclerotic lesion and promotes the contractile phenotype of smooth muscle cells. Circ Res 1999; 85 (10) 931-939
- 76 De Bleser PJ, Niki T, Xu G, Rogiers V, Geerts A. Localization and cellular sources of activins in normal and fibrotic rat liver. Hepatology 1997; 26 (04) 905-912
- 77 Sugiyama M, Ichida T, Sato T, Ishikawa T, Matsuda Y, Asakura H. Expression of activin A is increased in cirrhotic and fibrotic rat livers. Gastroenterology 1998; 114 (03) 550-558
- 78 Date M, Matsuzaki K, Matsushita M, Tahashi Y, Sakitani K, Inoue K. Differential regulation of activin A for hepatocyte growth and fibronectin synthesis in rat liver injury. J Hepatol 2000; 32 (02) 251-260
- 79 Huang X, Li DG, Wang ZR. , et al. Expression changes of activin A in the development of hepatic fibrosis. World J Gastroenterol 2001; 7 (01) 37-41
- 80 Wada W, Kuwano H, Hasegawa Y, Kojima I. The dependence of transforming growth factor-beta-induced collagen production on autocrine factor activin A in hepatic stellate cells. Endocrinology 2004; 145 (06) 2753-2759
- 81 Gressner OA, Lahme B, Siluschek M, Rehbein K, Weiskirchen R, Gressner AM. Intracrine signalling of activin A in hepatocytes upregulates connective tissue growth factor (CTGF/CCN2) expression. Liver Int 2008; 28 (09) 1207-1216
- 82 Masamune A, Watanabe T, Kikuta K, Shimosegawa T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin Gastroenterol Hepatol 2009; 7 (11, Suppl): S48-S54
- 83 Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 2012; 3: 344
- 84 Ohnishi N, Miyata T, Ohnishi H. , et al. Activin A is an autocrine activator of rat pancreatic stellate cells: potential therapeutic role of follistatin for pancreatic fibrosis. Gut 2003; 52 (10) 1487-1493
- 85 Glass A, Kundt G, Brock P. , et al. Delayed response toward activation stimuli in pancreatic stellate cells. Pancreas 2006; 33 (03) 293-300
- 86 Maeshima A, Zhang YQ, Nojima Y, Naruse T, Kojima I. Involvement of the activin-follistatin system in tubular regeneration after renal ischemia in rats. J Am Soc Nephrol 2001; 12 (08) 1685-1695
- 87 Maeshima A, Mishima K, Yamashita S. , et al. Follistatin, an activin antagonist, ameliorates renal interstitial fibrosis in a rat model of unilateral ureteral obstruction. BioMed Res Int 2014; 2014: 376191
- 88 Maeshima A, Miya M, Mishima K, Yamashita S, Kojima I, Nojima Y. Activin A: autocrine regulator of kidney development and repair. Endocr J 2008; 55 (01) 1-9
- 89 Matsuse T, Fukuchi Y, Eto Y. , et al. Expression of immunoreactive and bioactive activin A protein in adult murine lung after bleomycin treatment. Am J Respir Cell Mol Biol 1995; 13 (01) 17-24
- 90 Matsuse T, Ikegami A, Ohga E. , et al. Expression of immunoreactive activin A protein in remodeling lesions associated with interstitial pulmonary fibrosis. Am J Pathol 1996; 148 (03) 707-713
- 91 Ohga E, Matsuse T, Teramoto S. , et al. Effects of activin A on proliferation and differentiation of human lung fibroblasts. Biochem Biophys Res Commun 1996; 228 (02) 391-396
- 92 Mashal RD, Fejzo ML, Friedman AJ. , et al. Analysis of androgen receptor DNA reveals the independent clonal origins of uterine leiomyomata and the secondary nature of cytogenetic aberrations in the development of leiomyomata. Genes Chromosomes Cancer 1994; 11 (01) 1-6
- 93 Ligon AH, Morton CC. Genetics of uterine leiomyomata. Genes Chromosomes Cancer 2000; 28 (03) 235-245
- 94 Toledo G, Oliva E. Smooth muscle tumors of the uterus: a practical approach. Arch Pathol Lab Med 2008; 132 (04) 595-605
- 95 Islam MS, Protic O, Giannubilo SR. , et al. Uterine leiomyoma: available medical treatments and new possible therapeutic options. J Clin Endocrinol Metab 2013; 98 (03) 921-934
- 96 Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol 2008; 22 (04) 571-588
- 97 Fujita M. [Histological and biochemical studies of collagen in human uterine leiomyomas]. Hokkaido Igaku Zasshi 1985; 60 (04) 602-615
- 98 Stewart EA, Friedman AJ, Peck K, Nowak RA. Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab 1994; 79 (03) 900-906
- 99 Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril 2000; 73 (05) 1006-1011
- 100 Norian JM, Malik M, Parker CY. , et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci 2009; 16 (12) 1153-1164
- 101 Leppert PC, Baginski T, Prupas C, Catherino WH, Pletcher S, Segars JH. Comparative ultrastructure of collagen fibrils in uterine leiomyomas and normal myometrium. Fertil Steril 2004; 82 (Suppl. 03) 1182-1187
- 102 Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol 2006; 195 (02) 415-420
- 103 Catherino WH, Leppert PC, Stenmark MH. , et al. Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer 2004; 40 (03) 204-217
- 104 Wegienka G. Are uterine leiomyoma a consequence of a chronically inflammatory immune system?. Med Hypotheses 2012; 79 (02) 226-231
- 105 Wegienka G, Baird DD, Cooper T, Woodcroft KJ, Havstad S. Cytokine patterns differ seasonally between women with and without uterine leiomyomata. Am J Reprod Immunol 2013; 70 (04) 327-335
- 106 Hatthachote P, Gillespie JI. Complex interactions between sex steroids and cytokines in the human pregnant myometrium: evidence for an autocrine signaling system at term. Endocrinology 1999; 140 (06) 2533-2540
- 107 Kurachi O, Matsuo H, Samoto T, Maruo T. Tumor necrosis factor-α expression in human uterine leiomyoma and its down-regulation by progesterone. J Clin Endocrinol Metab 2001; 86 (05) 2275-2280
- 108 Litovkin KV, Domenyuk VP, Bubnov VV, Zaporozhan VN. Interleukin-6 -174G/C polymorphism in breast cancer and uterine leiomyoma patients: a population-based case control study. Exp Oncol 2007; 29 (04) 295-298
- 109 Syssoev KA, Kulagina NV, Chukhlovin AB, Morozova EB, Totolian AA. Expression of mRNA for chemokines and chemokine receptors in tissues of the myometrium and uterine leiomyoma. Bull Exp Biol Med 2008; 145 (01) 84-89
- 110 Sozen I, Olive DL, Arici A. Expression and hormonal regulation of monocyte chemotactic protein-1 in myometrium and leiomyomata. Fertil Steril 1998; 69 (06) 1095-1102
- 111 Jabbour HN, Sales KJ, Catalano RD, Norman JE. Inflammatory pathways in female reproductive health and disease. Reproduction 2009; 138 (06) 903-919
- 112 Protic O, Toti P, Islam MS. , et al. Possible involvement of inflammatory/reparative processes in the development of uterine fibroids. Cell Tissue Res 2016; 364 (02) 415-427
- 113 Skalli O, Ropraz P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 1986; 103 (6, Pt 2): 2787-2796
- 114 Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol 2007; 170 (06) 1807-1816
- 115 Mas A, Cervello I, Gil-Sanchis C, Simón C. Current understanding of somatic stem cells in leiomyoma formation. Fertil Steril 2014; 102 (03) 613-620
- 116 Ono M, Bulun SE, Maruyama T. Tissue-specific stem cells in the myometrium and tumor-initiating cells in leiomyoma. Biol Reprod 2014; 91 (06) 149
- 117 Ono M, Qiang W, Serna VA. , et al. Role of stem cells in human uterine leiomyoma growth. PLoS One 2012; 7 (05) e36935
- 118 Hinz B. Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 2007; 127 (03) 526-537
- 119 Kisseleva T, Brenner DA. Mechanisms of fibrogenesis. Exp Biol Med (Maywood) 2008; 233 (02) 109-122
- 120 Luo N, Guan Q, Zheng L, Qu X, Dai H, Cheng Z. Estrogen-mediated activation of fibroblasts and its effects on the fibroid cell proliferation. Transl Res 2014; 163 (03) 232-241
- 121 Ono M, Maruyama T, Masuda H. , et al. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A 2007; 104 (47) 18700-18705
- 122 Mas A, Cervelló I, Gil-Sanchis C. , et al. Identification and characterization of the human leiomyoma side population as putative tumor-initiating cells. Fertil Steril 2012; 98 (03) 741-751.e6
- 123 Barth PJ, Ramaswamy A, Moll R. CD34(+) fibrocytes in normal cervical stroma, cervical intraepithelial neoplasia III, and invasive squamous cell carcinoma of the cervix uteri. Virchows Arch 2002; 441 (06) 564-568
- 124 Barth PJ, Westhoff CC. CD34+ fibrocytes: morphology, histogenesis and function. Curr Stem Cell Res Ther 2007; 2 (03) 221-227
- 125 Lindenmayer AE, Miettinen M. Immunophenotypic features of uterine stromal cells. CD34 expression in endocervical stroma. Virchows Arch 1995; 426 (05) 457-460
- 126 Yin P, Ono M, Moravek MB. , et al. Human uterine leiomyoma stem/progenitor cells expressing CD34 and CD49b initiate tumors in vivo. J Clin Endocrinol Metab 2015; 100 (04) E601-E606
- 127 Hao H, Gabbiani G, Camenzind E, Bacchetta M, Virmani R, Bochaton-Piallat ML. Phenotypic modulation of intima and media smooth muscle cells in fatal cases of coronary artery lesion. Arterioscler Thromb Vasc Biol 2006; 26 (02) 326-332
- 128 Virmani R, Kolodgie FD, Burke AP. , et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005; 25 (10) 2054-2061
- 129 Islam MS, Catherino WH, Protic O. , et al. Role of activin-A and myostatin and their signaling pathway in human myometrial and leiomyoma cell function. J Clin Endocrinol Metab 2014; 99 (05) E775-E785
- 130 Ciarmela P, Wiater E, Vale W. Activin-A in myometrium: characterization of the actions on myometrial cells. Endocrinology 2008; 149 (05) 2506-2516
- 131 Tsigkou A, Reis FM, Ciarmela P. , et al. Expression levels of myostatin and matrix metalloproteinase 14 mRNAs in uterine leiomyoma are correlated with dysmenorrhea. Reprod Sci 2015; 22 (12) 1597-1602
- 132 Jones KL, Mansell A, Patella S. , et al. Activin A is a critical component of the inflammatory response, and its binding protein, follistatin, reduces mortality in endotoxemia. Proc Natl Acad Sci U S A 2007; 104 (41) 16239-16244
- 133 Sierra-Filardi E, Puig-Kröger A, Blanco FJ. , et al. Activin A skews macrophage polarization by promoting a proinflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers. Blood 2011; 117 (19) 5092-5101
- 134 Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25 (12) 677-686
- 135 Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity 2005; 23 (04) 344-346
- 136 Hinz B, Gabbiani G. Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 2003; 14 (05) 538-546
- 137 Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146 (01) 56-66
- 138 Chegini N, Zhao Y, Williams RS, Flanders KC. Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, TGF beta 3, and TGF beta type II receptor messenger ribonucleic acid and protein and contains [125I]TGF beta 1-binding sites. Endocrinology 1994; 135 (01) 439-449
- 139 Chegini N, Ma C, Tang XM, Williams RS. Effects of GnRH analogues, ‘add-back’ steroid therapy, antiestrogen and antiprogestins on leiomyoma and myometrial smooth muscle cell growth and transforming growth factor-beta expression. Mol Hum Reprod 2002; 8 (12) 1071-1078
- 140 Chegini N, Luo X, Ding L, Ripley D. The expression of Smads and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol 2003; 209 (1-2): 9-16
- 141 Ma C, Chegini N. Regulation of matrix metalloproteinases (MMPs) and their tissue inhibitors in human myometrial smooth muscle cells by TGF-beta1. Mol Hum Reprod 1999; 5 (10) 950-954
- 142 De Falco M, Staibano S, D'Armiento FP. , et al. Preoperative treatment of uterine leiomyomas: clinical findings and expression of transforming growth factor-beta3 and connective tissue growth factor. J Soc Gynecol Investig 2006; 13 (04) 297-303
- 143 Waghray M, Cui Z, Horowitz JC. , et al. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 2005; 19 (07) 854-856
- 144 Chen CJ, Kono H, Golenbock D, Reed G, Akira S, Rock KL. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 2007; 13 (07) 851-856
- 145 Aflatoonian R, Tuckerman E, Elliott SL. , et al. Menstrual cycle-dependent changes of Toll-like receptors in endometrium. Hum Reprod 2007; 22 (02) 586-593
- 146 Youssef RE, Ledingham MA, Bollapragada SS. , et al. The role of toll-like receptors (TLR-2 and -4) and triggering receptor expressed on myeloid cells 1 (TREM-1) in human term and preterm labor. Reprod Sci 2009; 16 (09) 843-856
- 147 Kaitu'u-Lino TJ, Phillips DJ, Morison NB, Salamonsen LA. A new role for activin in endometrial repair after menses. Endocrinology 2009; 150 (04) 1904-1911
- 148 Thannickal VJ, Horowitz JC. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 2006; 3 (04) 350-356
- 149 Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407 (6805): 770-776
- 150 Cummings J, Ward TH, Ranson M, Dive C. Apoptosis pathway-targeted drugs--from the bench to the clinic. Biochim Biophys Acta 2004; 1705 (01) 53-66
- 151 Phan SH. The myofibroblast in pulmonary fibrosis. Chest 2002; 122 (6, Suppl): 286S-289S
- 152 Byfield SD, Roberts AB. Lateral signaling enhances TGF-beta response complexity. Trends Cell Biol 2004; 14 (03) 107-111
- 153 Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol 1999; 19 (07) 1589-1594
- 154 Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275 (04) 2247-2250
- 155 Zeisberg M, Kalluri R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J Mol Med (Berl) 2004; 82 (03) 175-181