Digestive Disease Interventions 2017; 01(03): 225-232
DOI: 10.1055/s-0037-1607964
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Future Interventional Oncology Catheter-Based Therapies

Christopher Hiro Noda
1   Division of Interventional Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
,
Mihail Roubhaka
1   Division of Interventional Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
,
Resmi Charalel
1   Division of Interventional Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
,
Abdulrahman Masrani
1   Division of Interventional Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
,
Olaguoke Akinwande
1   Division of Interventional Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
› Author Affiliations
Further Information

Publication History

26 August 2017

21 September 2017

Publication Date:
09 November 2017 (online)

Abstract

Minimally invasive techniques in the treatment of cancer continue to develop at a rapid pace. Although surgical resection currently remains the only option for a complete cure, not all diseases are amenable to complete removal. This leaves opportunities to develop effective downstaging techniques as well as palliative care. In the realm of minimally invasive oncologic techniques, catheter-based therapies are an attractive option because malignancies require a blood supply to remain active. The intra-arterial (IA) delivery of specific tumoricidal drugs has been shown to be a successful delivery method in a variety of different cancers, and it is currently a progressive area of research. There is work both to increase the delivery specificity of oncologic drugs, including SW43 sigma receptor ligand and nanoparticle research. In addition, oncolytic viral therapy and 3-bromopyruvate have become increasingly more attractive tumoricidal drug prospects. In the future, the success of these therapies will ultimately determine the degree to which IA delivery will compete with the systemic delivery of drugs in the treatment of cancer.

 
  • References

  • 1 Hoffer FA. Interventional oncology: the future. Pediatr Radiol 2011; 41 (Suppl. 01) S201-S206
  • 2 Mackie CR, Noble HG, Cooper MJ, Collins P, Block GE, Moossa AR. Prospective evaluation of angiography in the diagnosis and management of patients suspected of having pancreatic cancer. Ann Surg 1979; 189 (01) 11-17
  • 3 Skinner DG, Colvin RB, Vermillion CD, Pfister RC, Leadbetter WF. Diagnosis and management of renal cell carcinoma. A clinical and pathologic study of 309 cases. Cancer 1971; 28 (05) 1165-1177
  • 4 Weyman PJ, McClennan BL, Stanley RJ, Levitt RG, Sagel SS. Comparison of computed tomography and angiography in the evaluation of renal cell carcinoma. Radiology 1980; 137 (02) 417-424
  • 5 Reuter SR, Redman HC, Siders DB. The spectrum of angiographic findings in hepatoma. Radiology 1970; 94 (01) 89-94
  • 6 Duran R, Chapiro J, Schernthaner RE, Geschwind JF. Systematic review of catheter-based intra-arterial therapies in hepatocellular carcinoma: state of the art and future directions. Br J Radiol 2015; 88 (1052): 20140564
  • 7 Breedis C, Young G. The blood supply of neoplasms in the liver. Am J Pathol 1954; 30 (05) 969-977
  • 8 Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology 2003; 37 (02) 429-442
  • 9 Salem R, Lewandowski RJ, Kulik L. , et al. Radioembolization results in longer time-to-progression and reduced toxicity compared with chemoembolization in patients with hepatocellular carcinoma. Gastroenterology 2011; 140 (02) 497-507.e2
  • 10 Salem R, Lewandowski RJ, Mulcahy MF. , et al. Radioembolization for hepatocellular carcinoma using yttrium-90 microspheres: a comprehensive report of long-term outcomes. Gastroenterology 2010; 138 (01) 52-64
  • 11 Doolittle ND, Miner ME, Hall WA. , et al. Safety and efficacy of a multicenter study using intraarterial chemotherapy in conjunction with osmotic opening of the blood-brain barrier for the treatment of patients with malignant brain tumors. Cancer 2000; 88 (03) 637-647
  • 12 Abramson DH, Dunkel IJ, Brodie SE, Kim JW, Gobin YP. A phase I/II study of direct intraarterial (ophthalmic artery) chemotherapy with melphalan for intraocular retinoblastoma initial results. Ophthalmology 2008; 115 (08) 1398-1404 , 1404.e1
  • 13 Kato T, Nemoto R, Mori H, Takahashi M, Harada M. Arterial chemoembolization with mitomycin C microcapsules in the treatment of primary or secondary carcinoma of the kidney, liver, bone and intrapelvic organs. Cancer 1981; 48 (03) 674-680
  • 14 Sheth RA, Hesketh R, Kong DS, Wicky S, Oklu R. Barriers to drug delivery in interventional oncology. J Vasc Interv Radiol 2013; 24 (08) 1201-1207
  • 15 Aydar E, Palmer CP, Djamgoz MB. Sigma receptors and cancer: possible involvement of ion channels. Cancer Res 2004; 64 (15) 5029-5035
  • 16 Vilner BJ, John CS, Bowen WD. Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 1995; 55 (02) 408-413
  • 17 Bem WT, Thomas GE, Mamone JY. , et al. Overexpression of sigma receptors in nonneural human tumors. Cancer Res 1991; 51 (24) 6558-6562
  • 18 Xu J, Zeng C, Chu W. , et al. Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site. Nat Commun 2011; 2: 380
  • 19 Ludwig JM, Gai Y, Sun L, Xiang G, Zeng D, Kim HS. SW43-DOX ± loading onto drug-eluting bead, a potential new targeted drug delivery platform for systemic and locoregional cancer treatment - an in vitro evaluation. Mol Oncol 2016; 10 (07) 1133-1145
  • 20 Hashim YM, Spitzer D, Vangveravong S. , et al. Targeted pancreatic cancer therapy with the small molecule drug conjugate SW IV-134. Mol Oncol 2014; 8 (05) 956-967
  • 21 Ludwig JM, Xing M, Gai Y, Sun L, Zeng D, Kim HS. Targeted yttrium 89-doxorubicin drug-eluting bead-a safety and feasibility pilot study in a rabbit liver cancer model. Mol Pharm 2017; 14 (08) 2824-2830
  • 22 Warburg O. On the origin of cancer cells. Science 1956; 123 (3191): 309-314
  • 23 Ganapathy-Kanniappan S, Geschwind JF, Kunjithapatham R. , et al. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is pyruvylated during 3-bromopyruvate mediated cancer cell death. Anticancer Res 2009; 29 (12) 4909-4918
  • 24 Pelicano H, Martin DS, Xu RH, Huang P. Glycolysis inhibition for anticancer treatment. Oncogene 2006; 25 (34) 4633-4646
  • 25 Ganapathy-Kanniappan S, Kunjithapatham R, Torbenson MS. , et al. Human hepatocellular carcinoma in a mouse model: assessment of tumor response to percutaneous ablation by using glyceraldehyde-3-phosphate dehydrogenase antagonists. Radiology 2012; 262 (03) 834-845
  • 26 Yadav S, Pandey SK, Kumar A, Kujur PK, Singh RP, Singh SM. Antitumor and chemosensitizing action of 3-bromopyruvate: implication of deregulated metabolism. Chem Biol Interact 2017; 270: 73-89
  • 27 Chapiro J, Sur S, Savic LJ. , et al. Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer. Clin Cancer Res 2014; 20 (24) 6406-6417
  • 28 Choi YH, Chung JW, Son KR. , et al. Novel intraarterial therapy for liver cancer using ethylbromopyruvate dissolved in an iodized oil. Acad Radiol 2011; 18 (04) 471-478
  • 29 Geschwind JF, Ko YH, Torbenson MS, Magee C, Pedersen PL. Novel therapy for liver cancer: direct intraarterial injection of a potent inhibitor of ATP production. Cancer Res 2002; 62 (14) 3909-3913
  • 30 Liapi E, Geschwind JF, Vali M. , et al. Assessment of tumoricidal efficacy and response to treatment with 18F-FDG PET/CT after intraarterial infusion with the antiglycolytic agent 3-bromopyruvate in the VX2 model of liver tumor. J Nucl Med 2011; 52 (02) 225-230
  • 31 Vali M, Vossen JA, Buijs M. , et al. Targeting of VX2 rabbit liver tumor by selective delivery of 3-bromopyruvate: a biodistribution and survival study. J Pharmacol Exp Ther 2008; 327 (01) 32-37
  • 32 Kunjithapatham R, Geschwind JF, Rao PP, Boronina TN, Cole RN, Ganapathy-Kanniappan S. Systemic administration of 3-bromopyruvate reveals its interaction with serum proteins in a rat model. BMC Res Notes 2013; 6: 277
  • 33 Phillips WT, Bao A, Brenner AJ, Goins BA. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 2014; 76: 39-59
  • 34 Sanvicens N, Marco MP. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol 2008; 26 (08) 425-433
  • 35 Liu Y, Welch MJ. Nanoparticles labeled with positron emitting nuclides: advantages, methods, and applications. Bioconjug Chem 2012; 23 (04) 671-682
  • 36 Liu Y, Zhang N. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials 2012; 33 (21) 5363-5375
  • 37 Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 2011; 63 (03) 131-135
  • 38 Wen X, Reynolds L, Mulik RS. , et al. Hepatic arterial infusion of low-density lipoprotein docosahexaenoic acid nanoparticles selectively disrupts redox balance in hepatoma cells and reduces growth of orthotopic liver tumors in tats. Gastroenterology 2016; 150 (02) 488-498
  • 39 Lencioni R, Braet F. Novel transarterial biomimetic-based nanoparticles for the treatment of hepatocellular carcinoma. Gastroenterology 2016; 150 (02) 312-314
  • 40 Reynolds L, Mulik RS, Wen X, Dilip A, Corbin IR. Low-density lipoprotein-mediated delivery of docosahexaenoic acid selectively kills murine liver cancer cells. Nanomedicine (Lond) 2014; 9 (14) 2123-2141
  • 41 Black KC, Wang Y, Luehmann HP. , et al. Radioactive 198Au-doped nanostructures with different shapes for in vivo analyses of their biodistribution, tumor uptake, and intratumoral distribution. ACS Nano 2014; 8 (05) 4385-4394
  • 42 Ellis JA, Banu M, Hossain SS. , et al. Reassessing the role of intra-arterial drug delivery for glioblastoma multiforme treatment. J Drug Deliv 2015; 2015: 405735
  • 43 Gupta S, Stafford RJ, Javadi S. , et al. Effects of near-infrared laser irradiation of biodegradable microspheres containing hollow gold nanospheres and paclitaxel administered intraarterially in a rabbit liver tumor model. J Vasc Interv Radiol 2012; 23 (04) 553-561
  • 44 Stephens RW, Knox KJ, Philip LA. , et al. The uptake of soluble and nanoparticulate imaging isotope in model liver tumours after intra-venous and intra-arterial administration. Biomaterials 2015; 39: 218-224
  • 45 Damascelli B, Cantù G, Mattavelli F. , et al. Intraarterial chemotherapy with polyoxyethylated castor oil free paclitaxel, incorporated in albumin nanoparticles (ABI-007): phase I study of patients with squamous cell carcinoma of the head and neck and anal canal: preliminary evidence of clinical activity. Cancer 2001; 92 (10) 2592-2602
  • 46 Nishiofuku H, Tanaka T, Fukuoka Y. , et al. Intraarterial therapy using micellar nanoparticles incorporating SN-38 in a rabbit liver tumor model. J Vasc Interv Radiol 2017; 28 (03) 457-464
  • 47 Kallini JR, Gabr A, Salem R, Lewandowski RJ. Transarterial radioembolization with yttrium-90 for the treatment of hepatocellular carcinoma. Adv Ther 2016; 33 (05) 699-714
  • 48 You J, Zhao J, Wen X. , et al. Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J Control Release 2015; 202: 40-48
  • 49 Li S, Wang M, Liu B. , et al. Lutetium-methanediide-alkyl complexes: synthesis and chemistry. Chemistry 2014; 20 (47) 15493-15498
  • 50 Bouchat V, Nuttens VE, Michiels C. , et al. Radioimmunotherapy with radioactive nanoparticles: biological doses and treatment efficiency for vascularized tumors with or without a central hypoxic area. Med Phys 2010; 37 (04) 1826-1839
  • 51 Bozkurt MF, Salanci BV, Uğur Ö. Intra-arterial radionuclide therapies for liver tumors. Semin Nucl Med 2016; 46 (04) 324-339
  • 52 Di Pasqua AJ, Huckle JE, Kim JK. , et al. Preparation of neutron-activatable holmium nanoparticles for the treatment of ovarian cancer metastases. Small 2012; 8 (07) 997-1000
  • 53 Sohn JH, Choi HJ, Lee JT. , et al. Phase II study of transarterial holmium-166-chitosan complex treatment in patients with a single, large hepatocellular carcinoma. Oncology 2009; 76 (01) 1-9
  • 54 Smits ML, van den Bosch MA, Nijsen JF, Zonnenberg BA. The evolution of radioembolisation. Lancet Oncol 2012; 13 (12) e519
  • 55 Fiandaca MS, Berger MS, Bankiewicz KS. The use of convection-enhanced delivery with liposomal toxins in neurooncology. Toxins (Basel) 2011; 3 (04) 369-397
  • 56 Phillips WT, Goins B, Bao A. , et al. Rhenium-186 liposomes as convection-enhanced nanoparticle brachytherapy for treatment of glioblastoma. Neuro-oncol 2012; 14 (04) 416-425
  • 57 Sze DY, Reid TR, Rose SC. Oncolytic virotherapy. J Vasc Interv Radiol 2013; 24 (08) 1115-1122
  • 58 Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: a new era of cancer treatment at dawn. Cancer Sci 2016; 107 (10) 1373-1379
  • 59 Bell J, McFadden G. Viruses for tumor therapy. Cell Host Microbe 2014; 15 (03) 260-265
  • 60 Melcher A, Parato K, Rooney CM, Bell JC. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 2011; 19 (06) 1008-1016
  • 61 Boisgerault N, Achard C, Delaunay T. , et al. Oncolytic virotherapy for human malignant mesothelioma: recent advances. Oncolytic Virother 2015; 4: 133-140
  • 62 Jebar AH, Errington-Mais F, Vile RG, Selby PJ, Melcher AA, Griffin S. Progress in clinical oncolytic virus-based therapy for hepatocellular carcinoma. J Gen Virol 2015; 96 (Pt 7): 1533-1550
  • 63 Kicielinski KP, Chiocca EA, Yu JS, Gill GM, Coffey M, Markert JM. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther 2014; 22 (05) 1056-1062
  • 64 Lin XJ, Li QJ, Lao XM, Yang H, Li SP. Transarterial injection of recombinant human type-5 adenovirus H101 in combination with transarterial chemoembolization (TACE) improves overall and progressive-free survival in unresectable hepatocellular carcinoma (HCC). BMC Cancer 2015; 15: 707
  • 65 Andtbacka RH, Kaufman HL, Collichio F. , et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33 (25) 2780-2788
  • 66 Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015; 14 (09) 642-662
  • 67 Strobl H, Knapp W. TGF-beta1 regulation of dendritic cells. Microbes Infect 1999; 1 (15) 1283-1290
  • 68 Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther 2010; 18 (02) 251-263
  • 69 Prestwich RJ, Errington F, Steele LP. , et al. Reciprocal human dendritic cell-natural killer cell interactions induce antitumor activity following tumor cell infection by oncolytic reovirus. J Immunol 2009; 183 (07) 4312-4321