Subscribe to RSS
DOI: 10.1055/s-0037-1608801
The Microbiome in Primary Sclerosing Cholangitis: Current Evidence and Potential Concepts
Publication History
Publication Date:
22 December 2017 (online)
Abstract
The close relationship between primary sclerosing cholangitis (PSC) and inflammatory bowel disease has inspired hypothetical models in which gut bacteria or bacterial products are key players in PSC pathogenesis. Several studies using high-throughput sequencing technology to characterize the gut microbiota in PSC have been published over the past years. They all report reduced diversity and significant shifts in the overall composition of the gut microbiota. However, it remains unclear as to whether the observed changes are primary or secondary to PSC development and further studies are needed to assess the biological implications of the findings. In the present article, we review the published data in perspective of similar studies in other diseases. We discuss aspects of methodology and study design that are relevant to interpretation of the data. Furthermore, we propose that interpretation and further assessments of findings are structured into conceptual compartments, and elaborate three such possible concepts relating to immune function (the “immunobiome”), host metabolism (the “endobiome”), and dietary and xenobiotic factors (the “xenobiome”) in PSC.
-
References
- 1 Hirschfield GM, Karlsen TH, Lindor KD, Adams DH. Primary sclerosing cholangitis. Lancet 2013; 382 (9904): 1587-1599
- 2 Karlsen TH. Primary sclerosing cholangitis: 50 years of a gut-liver relationship and still no love?. Gut 2016; 65 (10) 1579-1581
- 3 Rankin JG, Boden RW, Goulston SJ, Morrow W. The liver in ulcerative colitis; treatment of pericholangitis with tetracycline. Lancet 1959; 2 (7112): 1110-1112
- 4 Boner AL, Peroni D, Bodini A, Delaini G, Piacentini G. Azithromycin may reduce cholestasis in primary sclerosing cholangitis: a case report and serendipitous observation. Int J Immunopathol Pharmacol 2007; 20 (04) 847-849
- 5 Karlsen TH, Vesterhus M, Boberg KM. Review article: controversies in the management of primary biliary cirrhosis and primary sclerosing cholangitis. Aliment Pharmacol Ther 2014; 39 (03) 282-301
- 6 Fosby B, Melum E, Bjøro K. , et al. Liver transplantation in the Nordic countries - An intention to treat and post-transplant analysis from The Nordic Liver Transplant Registry 1982-2013. Scand J Gastroenterol 2015; 50 (06) 797-808
- 7 Bergquist A, Montgomery SM, Bahmanyar S. , et al. Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2008; 6 (08) 939-943
- 8 Jiang X, Karlsen TH. Genetics of primary sclerosing cholangitis and pathophysiological implications. Nat Rev Gastroenterol Hepatol 2017; 14 (05) 279-295
- 9 Ji SG, Juran BD, Mucha S. , et al; UK-PSC Consortium; International IBD Genetics Consortium; International PSC Study Group. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet 2017; 49 (02) 269-273
- 10 Liu JZ, Hov JR, Folseraas T. , et al; UK-PSCSC Consortium; International PSC Study Group; International IBD Genetics Consortium. Dense genotyping of immune-related disease regions identifies nine new risk loci for primary sclerosing cholangitis. Nat Genet 2013; 45 (06) 670-675
- 11 Melum E, Franke A, Schramm C. , et al. Genome-wide association analysis in primary sclerosing cholangitis identifies two non-HLA susceptibility loci. Nat Genet 2011; 43 (01) 17-19
- 12 Henriksen EKK, Melum E, Karlsen TH. Update on primary sclerosing cholangitis genetics. Curr Opin Gastroenterol 2014; 30 (03) 310-319
- 13 Andersen IM, Tengesdal G, Lie BA, Boberg KM, Karlsen TH, Hov JR. Effects of coffee consumption, smoking, and hormones on risk for primary sclerosing cholangitis. Clin Gastroenterol Hepatol 2014; 12 (06) 1019-1028
- 14 Lammert C, Juran BD, Schlicht E. , et al. Reduced coffee consumption among individuals with primary sclerosing cholangitis but not primary biliary cirrhosis. Clin Gastroenterol Hepatol 2014; 12 (09) 1562-1568
- 15 Loftus Jr EV, Sandborn WJ, Tremaine WJ. , et al. Primary sclerosing cholangitis is associated with nonsmoking: a case-control study. Gastroenterology 1996; 110 (05) 1496-1502
- 16 Mitchell SA, Thyssen M, Orchard TR, Jewell DP, Fleming KA, Chapman RW. Cigarette smoking, appendectomy, and tonsillectomy as risk factors for the development of primary sclerosing cholangitis: a case control study. Gut 2002; 51 (04) 567-573
- 17 van Erpecum KJ, Smits SJ, van de Meeberg PC. , et al. Risk of primary sclerosing cholangitis is associated with nonsmoking behavior. Gastroenterology 1996; 110 (05) 1503-1506
- 18 Chung BK, Karlsen TH. Genetic Discoveries Highlight Environmental Factors as Key Drivers of Liver Disease. Dig Dis 2017; 35 (04) 323-333
- 19 Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016; 14 (08) e1002533
- 20 Ridaura VK, Faith JJ, Rey FE. , et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013; 341 (6150): 1241214
- 21 Tang WH, Wang Z, Levison BS. , et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368 (17) 1575-1584
- 22 Karlsson FH, Tremaroli V, Nookaew I. , et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013; 498 (7452): 99-103
- 23 Gevers D, Kugathasan S, Denson LA. , et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 2014; 15 (03) 382-392
- 24 Kuczynski J, Lauber CL, Walters WA. , et al. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 2011; 13 (01) 47-58
- 25 Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology 2014; 146 (06) 1437-1448.e1
- 26 Eckburg PB, Bik EM, Bernstein CN. , et al. Diversity of the human intestinal microbial flora. Science 2005; 308 (5728): 1635-1638
- 27 Caporaso JG, Lauber CL, Walters WA. , et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012; 6 (08) 1621-1624
- 28 Fadrosh DW, Ma B, Gajer P. , et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2014; 2 (01) 6
- 29 Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 2013; 79 (17) 5112-5120
- 30 Yang AM, Inamine T, Hochrath K. , et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127 (07) 2829-2841
- 31 Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature 2006; 444 (7122): 1022-1023
- 32 Zhang C, Cleveland K, Schnoll-Sussman F. , et al. Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol 2015; 16: 265
- 33 Langille MG, Zaneveld J, Caporaso JG. , et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 2013; 31 (09) 814-821
- 34 Aßhauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 2015; 31 (17) 2882-2884
- 35 Iwai S, Weinmaier T, Schmidt BL. , et al. Piphillin: Improved Prediction of Metagenomic Content by Direct Inference from Human Microbiomes. PLoS One 2016; 11 (11) e0166104
- 36 Fuentes S, Rossen NG, van der Spek MJ. , et al. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME J 2017; 11 (08) 1877-1889
- 37 Lagier JC, Khelaifia S, Alou MT. , et al. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 2016; 1: 16203
- 38 Gilbert JA, Quinn RA, Debelius J. , et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016; 535 (7610): 94-103
- 39 Wang Z, Klipfell E, Bennett BJ. , et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472 (7341): 57-63
- 40 Holmes E, Li JV, Marchesi JR, Nicholson JK. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab 2012; 16 (05) 559-564
- 41 Bashiardes S, Zilberman-Schapira G, Elinav E. Use of Metatranscriptomics in Microbiome Research. Bioinform Biol Insights 2016; 10: 19-25
- 42 Valles-Colomer M, Darzi Y, Vieira-Silva S, Falony G, Raes J, Joossens M. Meta-omics in Inflammatory Bowel Disease Research: Applications, Challenges, and Guidelines. J Crohn's Colitis 2016; 10 (06) 735-746
- 43 Stappenbeck TS, Virgin HW. Accounting for reciprocal host-microbiome interactions in experimental science. Nature 2016; 534 (7606): 191-199
- 44 Gustafsson BE. Germ-free rearing of rats, general techniques. Acta Pathol Microbiol Scand 1948; 25 (S73): 5-130
- 45 Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006; 444 (7122): 1027-1031
- 46 Hildebrand F, Nguyen TL, Brinkman B. , et al. Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 2013; 14 (01) R4
- 47 Zhernakova A, Kurilshikov A, Bonder MJ. , et al. LifeLines cohort study. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016; 352 (6285): 565-569
- 48 Falony G, Joossens M, Vieira-Silva S. , et al. Population-level analysis of gut microbiome variation. Science 2016; 352 (6285): 560-564
- 49 Wang J, Thingholm LB, Skiecevičienė J. , et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet 2016; 48 (11) 1396-1406
- 50 Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 2016; 65 (01) 57-62
- 51 Kevans D, Tyler AD, Holm K. , et al. Characterization of Intestinal Microbiota in Ulcerative Colitis Patients with and without Primary Sclerosing Cholangitis. J Crohn's Colitis 2016; 10 (03) 330-337
- 52 Sze MA, Schloss PD. Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. MBio 2016; 7 (04) 7
- 53 Claesson MJ, Jeffery IB, Conde S. , et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488 (7410): 178-184
- 54 Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4554-4561
- 55 Wu GD, Chen J, Hoffmann C. , et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011; 334 (6052): 105-108
- 56 David LA, Maurice CF, Carmody RN. , et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505 (7484): 559-563
- 57 Wu H, Esteve E, Tremaroli V. , et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med 2017; 23 (07) 850-858
- 58 Atarashi K, Tanoue T, Ando M. , et al. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell 2015; 163 (02) 367-380
- 59 Kovatcheva-Datchary P, Nilsson A, Akrami R. , et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab 2015; 22 (06) 971-982
- 60 Tremaroli V, Karlsson F, Werling M. , et al. Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metab 2015; 22 (02) 228-238
- 61 Koren O, Goodrich JK, Cullender TC. , et al. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 2012; 150 (03) 470-480
- 62 Rossen NG, Fuentes S, Boonstra K. , et al. The mucosa-associated microbiota of PSC patients is characterized by low diversity and low abundance of uncultured Clostridiales II. J Crohn's Colitis 2015; 9 (04) 342-348
- 63 Torres J, Bao X, Goel A. , et al. The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment Pharmacol Ther 2016; 43 (07) 790-801
- 64 Quraishi MN, Sergeant M, Kay G. , et al. The gut-adherent microbiota of PSC-IBD is distinct to that of IBD. Gut 2017; 66 (02) 386-388
- 65 Kummen M, Holm K, Anmarkrud JA. , et al. The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 2017; 66 (04) 611-619
- 66 Sabino J, Vieira-Silva S, Machiels K. , et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut 2016; 65 (10) 1681-1689
- 67 Bajer L, Kverka M, Kostovcik M. , et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol 2017; 23 (25) 4548-4558
- 68 Rühlemann MC, Heinsen FA, Zenouzi R, Lieb W, Franke A, Schramm C. Faecal microbiota profiles as diagnostic biomarkers in primary sclerosing cholangitis. Gut 2017; 66 (04) 753-754
- 69 Iwasawa K, Suda W, Tsunoda T. , et al. Characterisation of the faecal microbiota in Japanese patients with paediatric-onset primary sclerosing cholangitis. Gut 2017; 66 (07) 1344-1346
- 70 Fodor AA, Klem ER, Gilpin DF. , et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. PLoS One 2012; 7 (09) e45001
- 71 Tang R, Wei Y, Li Y. , et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut 2017 ;gutjnl-2016-313332
- 72 Lv LX, Fang DQ, Shi D. , et al. Alterations and correlations of the gut microbiome, metabolism and immunity in patients with primary biliary cirrhosis. Environ Microbiol 2016; 18 (07) 2272-2286
- 73 Wei X, Yan X, Zou D. , et al. Abnormal fecal microbiota community and functions in patients with hepatitis B liver cirrhosis as revealed by a metagenomic approach. BMC Gastroenterol 2013; 13: 175
- 74 Bajaj JS, Hylemon PB, Ridlon JM. , et al. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am J Physiol Gastrointest Liver Physiol 2012; 303 (06) G675-G685
- 75 Kummen M, Vesterhus M, Trøseid M. , et al. Elevated trimethylamine-N-oxide (TMAO) is associated with poor prognosis in primary sclerosing cholangitis patients with normal liver function. United European Gastroenterol J 2017; 5 (04) 532-541
- 76 Bajaj JS, Liu EJ, Kheradman R. , et al. Fungal dysbiosis in cirrhosis. Gut 2017 ;gutjnl-2016-313170
- 77 Qin N, Yang F, Li A. , et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 513 (7516): 59-64
- 78 Loomba R, Seguritan V, Li W. , et al. Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab 2017; 25 (05) 1054-1062.e5
- 79 Bajaj JS, Heuman DM, Hylemon PB. , et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 2014; 60 (05) 940-947
- 80 Tabibian JH, Gossard A, El-Youssef M. , et al. Prospective Clinical Trial of Rifaximin Therapy for Patients With Primary Sclerosing Cholangitis. Am J Ther 2017; 24 (01) e56-e63
- 81 Färkkilä M, Karvonen AL, Nurmi H. , et al. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: a randomized placebo-controlled trial. Hepatology 2004; 40 (06) 1379-1386
- 82 Tabibian JH, Weeding E, Jorgensen RA. , et al. Randomised clinical trial: vancomycin or metronidazole in patients with primary sclerosing cholangitis - a pilot study. Aliment Pharmacol Ther 2013; 37 (06) 604-612
- 83 Silveira MG, Torok NJ, Gossard AA. , et al. Minocycline in the treatment of patients with primary sclerosing cholangitis: results of a pilot study. Am J Gastroenterol 2009; 104 (01) 83-88
- 84 Rahimpour S, Nasiri-Toosi M, Khalili H, Ebrahimi-Daryani N, Nouri-Taromlou MK, Azizi Z. A Triple Blinded, Randomized, Placebo-Controlled Clinical Trial to Evaluate the Efficacy and Safety of Oral Vancomycin in Primary Sclerosing Cholangitis: a Pilot Study. J Gastrointestin Liver Dis 2016; 25 (04) 457-464
- 85 Mistilis SP, Skyring AP, Goulston SJ. Effect of long-term tetracycline therapy, steroid therapy and colectomy in pericholangitis associated with ulcerative colitis. Australas Ann Med 1965; 14 (04) 286-294
- 86 Mathew KK. Metronidazole in primary cholangitis. J Indian Med Assoc 1983; 80 (02) 31-33 , 33
- 87 Kozaiwa K, Tajiri H, Sawada A. , et al. Three paediatric cases of primary sclerosing cholangitis treated with ursodeoxycholic acid and sulphasalazine. J Gastroenterol Hepatol 1998; 13 (08) 825-829
- 88 Cox KL, Cox KM. Oral vancomycin: treatment of primary sclerosing cholangitis in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr 1998; 27 (05) 580-583
- 89 Tada S, Ebinuma H, Saito H, Hibi T. Therapeutic benefit of sulfasalazine for patients with primary sclerosing cholangitis. J Gastroenterol 2006; 41 (04) 388-389
- 90 Davies YK, Tsay CJ, Caccamo DV, Cox KM, Castillo RO, Cox KL. Successful treatment of recurrent primary sclerosing cholangitis after orthotopic liver transplantation with oral vancomycin. Case Rep Transplant 2013; 314292 . doi: 10.1155/2013/314292. [Epub ahead of print]
- 91 Hey P, Lokan J, Johnson P, Gow P. Efficacy of oral vancomycin in recurrent primary sclerosing cholangitis following liver transplantation. BMJ Case Rep 2017; DOI: 10.1136/bcr-2017-221165. [Epub ahead of print]
- 92 Davies YK, Cox KM, Abdullah BA, Safta A, Terry AB, Cox KL. Long-term treatment of primary sclerosing cholangitis in children with oral vancomycin: an immunomodulating antibiotic. J Pediatr Gastroenterol Nutr 2008; 47 (01) 61-67
- 93 Abarbanel DN, Seki SM, Davies Y. , et al. Immunomodulatory effect of vancomycin on Treg in pediatric inflammatory bowel disease and primary sclerosing cholangitis. J Clin Immunol 2013; 33 (02) 397-406
- 94 Finegold SM, John SS, Vu AW. , et al. In vitro activity of ramoplanin and comparator drugs against anaerobic intestinal bacteria from the perspective of potential utility in pathology involving bowel flora. Anaerobe 2004; 10 (04) 205-211
- 95 Paramsothy S, Kamm MA, Kaakoush NO. , et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet 2017; 389 (10075): 1218-1228
- 96 Rossen NG, Fuentes S, van der Spek MJ. , et al. Findings From a Randomized Controlled Trial of Fecal Transplantation for Patients With Ulcerative Colitis. Gastroenterology 2015; 149 (01) 110-118.e4
- 97 Moayyedi P, Surette MG, Kim PT. , et al. Fecal Microbiota Transplantation Induces Remission in Patients With Active Ulcerative Colitis in a Randomized Controlled Trial. Gastroenterology 2015; 149 (01) 102-109.e6
- 98 Costello SP, Soo W, Bryant RV, Jairath V, Hart AL, Andrews JM. Systematic review with meta-analysis: faecal microbiota transplantation for the induction of remission for active ulcerative colitis. Aliment Pharmacol Ther 2017; 46 (03) 213-224
- 99 Vleggaar FP, Monkelbaan JF, van Erpecum KJ. Probiotics in primary sclerosing cholangitis: a randomized placebo-controlled crossover pilot study. Eur J Gastroenterol Hepatol 2008; 20 (07) 688-692
- 100 Derwa Y, Gracie DJ, Hamlin PJ, Ford AC. Systematic review with meta-analysis: the efficacy of probiotics in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46 (04) 389-400
- 101 Van den Bossche L, Hindryckx P, Devisscher L. , et al. Ursodeoxycholic Acid and Its Taurine- or Glycine-Conjugated Species Reduce Colitogenic Dysbiosis and Equally Suppress Experimental Colitis in Mice. Appl Environ Microbiol 2017; 83 (07) 83
- 102 Olsson R, Björnsson E, Bäckman L. , et al. Bile duct bacterial isolates in primary sclerosing cholangitis: a study of explanted livers. J Hepatol 1998; 28 (03) 426-432
- 103 Rudolph G, Gotthardt D, Klöters-Plachky P, Kulaksiz H, Rost D, Stiehl A. Influence of dominant bile duct stenoses and biliary infections on outcome in primary sclerosing cholangitis. J Hepatol 2009; 51 (01) 149-155
- 104 Kulaksiz H, Rudolph G, Kloeters-Plachky P, Sauer P, Geiss H, Stiehl A. Biliary candida infections in primary sclerosing cholangitis. J Hepatol 2006; 45 (05) 711-716
- 105 Björnsson ES, Kilander AF, Olsson RG. Bile duct bacterial isolates in primary sclerosing cholangitis and certain other forms of cholestasis--a study of bile cultures from ERCP. Hepatogastroenterology 2000; 47 (36) 1504-1508
- 106 Folseraas T, Melum E, Rausch P. , et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol 2012; 57 (02) 366-375
- 107 Pereira P, Aho V, Arola J. , et al. Bile microbiota in primary sclerosing cholangitis: Impact on disease progression and development of biliary dysplasia. PLoS One 2017; 12 (08) e0182924
- 108 Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 2017; 5 (01) 48
- 109 Rupp C, Bode KA, Chahoud F. , et al. Risk factors and outcome in patients with primary sclerosing cholangitis with persistent biliary candidiasis. BMC Infect Dis 2014; 14: 562
- 110 Pohl J, Ring A, Stremmel W, Stiehl A. The role of dominant stenoses in bacterial infections of bile ducts in primary sclerosing cholangitis. Eur J Gastroenterol Hepatol 2006; 18 (01) 69-74
- 111 Boden RW, Rankin JG, Goulston SJ, Morrow W. The liver in ulcerative colitis; the significance of raised serum-alkaline-phosphatase levels. Lancet 1959; 2 (7097): 245-248
- 112 Lichtman SN, Keku J, Clark RL, Schwab JH, Sartor RB. Biliary tract disease in rats with experimental small bowel bacterial overgrowth. Hepatology 1991; 13 (04) 766-772
- 113 Lichtman SN, Keku J, Schwab JH, Sartor RB. Evidence for peptidoglycan absorption in rats with experimental small bowel bacterial overgrowth. Infect Immun 1991; 59 (02) 555-562
- 114 Lichtman SN, Okoruwa EE, Keku J, Schwab JH, Sartor RB. Degradation of endogenous bacterial cell wall polymers by the muralytic enzyme mutanolysin prevents hepatobiliary injury in genetically susceptible rats with experimental intestinal bacterial overgrowth. J Clin Invest 1992; 90 (04) 1313-1322
- 115 Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75 (02) 263-274
- 116 Garrett WS, Lord GM, Punit S. , et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 2007; 131 (01) 33-45
- 117 Sayin SI, Wahlström A, Felin J. , et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab 2013; 17 (02) 225-235
- 118 Tabibian JH, O'Hara SP, Trussoni CE. , et al. Absence of the intestinal microbiota exacerbates hepatobiliary disease in a murine model of primary sclerosing cholangitis in mice. Hepatology 2016; 63 (01) 185-96
- 119 Tabibian JH, O'Hara SP, Splinter PL, Trussoni CE, LaRusso NF. Cholangiocyte senescence by way of N-ras activation is a characteristic of primary sclerosing cholangitis. Hepatology 2014; 59 (06) 2263-2275
- 120 Schrumpf E, Kummen M, Valestrand L. , et al. The gut microbiota contributes to a mouse model of spontaneous bile duct inflammation. J Hepatol 2017; 66 (02) 382-389
- 121 Minot S, Sinha R, Chen J. , et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 2011; 21 (10) 1616-1625
- 122 Norman JM, Handley SA, Baldridge MT. , et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015; 160 (03) 447-460
- 123 Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH. Review article: fungal microbiota and digestive diseases. Aliment Pharmacol Ther 2014; 39 (08) 751-766
- 124 Iliev ID, Funari VA, Taylor KD. , et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science 2012; 336 (6086): 1314-1317
- 125 Sokol H, Leducq V, Aschard H. , et al. Fungal microbiota dysbiosis in IBD. Gut 2017; 66 (06) 1039-1048
- 126 Sasatomi K, Noguchi K, Sakisaka S, Sata M, Tanikawa K. Abnormal accumulation of endotoxin in biliary epithelial cells in primary biliary cirrhosis and primary sclerosing cholangitis. J Hepatol 1998; 29 (03) 409-416
- 127 Mueller T, Beutler C, Picó AH. , et al. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis. Liver Int 2011; 31 (10) 1574-1588
- 128 Karrar A, Broomé U, Södergren T. , et al. Biliary epithelial cell antibodies link adaptive and innate immune responses in primary sclerosing cholangitis. Gastroenterology 2007; 132 (04) 1504-1514
- 129 Kain R, Exner M, Brandes R. , et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 2008; 14 (10) 1088-1096
- 130 Zhang X, Zhang D, Jia H. , et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med 2015; 21 (08) 895-905
- 131 Hov JR, Boberg KM, Karlsen TH. Autoantibodies in primary sclerosing cholangitis. World J Gastroenterol 2008; 14 (24) 3781-3791
- 132 Terjung B, Söhne J, Lechtenberg B. , et al. p-ANCAs in autoimmune liver disorders recognise human beta-tubulin isotype 5 and cross-react with microbial protein FtsZ. Gut 2010; 59 (06) 808-816
- 133 Op De Beéck K, Van den Bergh K, Vermeire S. , et al. Immune reactivity to β-tubulin isotype 5 and vesicular integral-membrane protein 36 in patients with autoimmune gastrointestinal disorders. Gut 2011; 60 (11) 1601-1602
- 134 Hov JR, Boberg KM, Taraldsrud E. , et al. Antineutrophil antibodies define clinical and genetic subgroups in primary sclerosing cholangitis. Liver Int 2017; 37 (03) 458-465
- 135 Lunder AK, Hov JR, Borthne A. , et al. Prevalence of Sclerosing Cholangitis Detected by Magnetic Resonance Cholangiography in Patients With Long-term Inflammatory Bowel Disease. Gastroenterology 2016; 151 (04) 660-669.e4
- 136 Jendrek ST, Gotthardt D, Nitzsche T. , et al. Anti-GP2 IgA autoantibodies are associated with poor survival and cholangiocarcinoma in primary sclerosing cholangitis. Gut 2017; 66 (01) 137-144
- 137 Hase K, Kawano K, Nochi T. , et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 2009; 462 (7270): 226-230
- 138 Papp M, Altorjay I, Dotan N. , et al; Hungarian IBD Study Group. New serological markers for inflammatory bowel disease are associated with earlier age at onset, complicated disease behavior, risk for surgery, and NOD2/CARD15 genotype in a Hungarian IBD cohort. Am J Gastroenterol 2008; 103 (03) 665-681
- 139 Palm NW, de Zoete MR, Cullen TW. , et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 2014; 158 (05) 1000-1010
- 140 Sollid LM, Jabri B. Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol 2013; 13 (04) 294-302
- 141 Daly AK, Donaldson PT, Bhatnagar P. , et al; DILIGEN Study; International SAE Consortium. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009; 41 (07) 816-819
- 142 Broomé U, Grunewald J, Scheynius A, Olerup O, Hultcrantz R. Preferential V beta3 usage by hepatic T lymphocytes in patients with primary sclerosing cholangitis. J Hepatol 1997; 26 (03) 527-534
- 143 Henriksen EK, Jørgensen KK, Kaveh F. , et al. Gut and liver T-cells of common clonal origin in primary sclerosing cholangitis-inflammatory bowel disease. J Hepatol 2017; 66 (01) 116-122
- 144 Liaskou E, Klemsdal Henriksen EK, Holm K. , et al. High-throughput T-cell receptor sequencing across chronic liver diseases reveals distinct disease-associated repertoires. Hepatology 2016; 63 (05) 1608-1619
- 145 Fosby B, Karlsen TH, Melum E. Recurrence and rejection in liver transplantation for primary sclerosing cholangitis. World J Gastroenterol 2012; 18 (01) 1-15
- 146 Legoux F, Salou M, Lantz O. Unconventional or Preset αβ T Cells: Evolutionarily Conserved Tissue-Resident T Cells Recognizing Nonpeptidic Ligands. Annu Rev Cell Dev Biol 2017; 33: 511-535
- 147 Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol 2015; 16 (11) 1114-1123
- 148 Jeffery HC, van Wilgenburg B, Kurioka A. , et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol 2016; 64 (05) 1118-1127
- 149 Schrumpf E, Tan C, Karlsen TH. , et al. The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology 2015; 62 (04) 1249-1259
- 150 Olszak T, Neves JF, Dowds CM. , et al. Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 2014; 509 (7501): 497-502
- 151 Schmidt LH, Hughes HB. Studies on bile acid metabolism: the fate of cholic acid in the guinea pig. J Biol Chem 1942; 143: 771-783
- 152 Ridlon JM, Bajaj JS. The human gut sterolbiome: bile acid-microbiome endocrine aspects and therapeutics. Acta Pharm Sin B 2015; 5 (02) 99-105
- 153 Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature 2012; 489 (7415): 242-249
- 154 Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: Gut microbiota: the neglected endocrine organ. Mol Endocrinol 2014; 28 (08) 1221-1238
- 155 Midtvedt T. Microbial bile acid transformation. Am J Clin Nutr 1974; 27 (11) 1341-1347
- 156 Fischer S, Beuers U, Spengler U, Zwiebel FM, Koebe HG. Hepatic levels of bile acids in end-stage chronic cholestatic liver disease. Clin Chim Acta 1996; 251 (02) 173-186
- 157 Trauner M, Fickert P, Wagner M. MDR3 (ABCB4) defects: a paradigm for the genetics of adult cholestatic syndromes. Semin Liver Dis 2007; 27 (01) 77-98
- 158 Hohenester S, Wenniger LM, Paulusma CC. , et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology 2012; 55 (01) 173-183
- 159 Zweers SJ, Shiryaev A, Komuta M. , et al. Elevated interleukin-8 in bile of patients with primary sclerosing cholangitis. Liver Int 2016; 36 (09) 1370-1377
- 160 Gauss A, Ehehalt R, Lehmann WD. , et al. Biliary phosphatidylcholine and lysophosphatidylcholine profiles in sclerosing cholangitis. World J Gastroenterol 2013; 19 (33) 5454-5463
- 161 Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47 (02) 241-259
- 162 Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology 2017; 152 (07) 1679-1694.e3
- 163 Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol 2015; 62 (1, Suppl) S25-S37
- 164 Halilbasic E, Claudel T, Trauner M. Bile acid transporters and regulatory nuclear receptors in the liver and beyond. J Hepatol 2013; 58 (01) 155-168
- 165 Nevens F, Andreone P, Mazzella G. , et al; POISE Study Group. A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. N Engl J Med 2016; 375 (07) 631-643
- 166 Wahlström A, Kovatcheva-Datchary P, Ståhlman M, Khan MT, Bäckhed F, Marschall HU. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota. J Lipid Res 2017; 58 (02) 412-419
- 167 Trauner M, Fuchs CD, Halilbasic E, Paumgartner G. New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 2017; 65 (04) 1393-1404
- 168 Olsson R, Boberg KM, de Muckadell OS. , et al. High-dose ursodeoxycholic acid in primary sclerosing cholangitis: a 5-year multicenter, randomized, controlled study. Gastroenterology 2005; 129 (05) 1464-1472
- 169 Lindor KD, Kowdley KV, Luketic VA. , et al. High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 2009; 50 (03) 808-814
- 170 Sinakos E, Marschall HU, Kowdley KV, Befeler A, Keach J, Lindor K. Bile acid changes after high-dose ursodeoxycholic acid treatment in primary sclerosing cholangitis: Relation to disease progression. Hepatology 2010; 52 (01) 197-203
- 171 Fickert P, Fuchsbichler A, Marschall HU. , et al. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice. Am J Pathol 2006; 168 (02) 410-422
- 172 Imam MH, Sinakos E, Gossard AA. , et al. High-dose ursodeoxycholic acid increases risk of adverse outcomes in patients with early stage primary sclerosing cholangitis. Aliment Pharmacol Ther 2011; 34 (10) 1185-1192
- 173 Fickert P, Hirschfield GM, Denk G. , et al; European PSC norUDCA Study Group. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol 2017; 67 (03) 549-558
- 174 Pickard JM, Maurice CF, Kinnebrew MA. , et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014; 514 (7524): 638-641
- 175 Maurice CF, Haiser HJ, Turnbaugh PJ. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 2013; 152 (1-2): 39-50
- 176 Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016; 165 (06) 1332-1345
- 177 Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 2016; 16 (06) 341-352
- 178 Lin JK, Ho YS. Hepatotoxicity and hepatocarcinogenicity in rats fed squid with or without exogenous nitrite. Food Chem Toxicol 1992; 30 (08) 695-702
- 179 Trivedi PJ, Tickle J, Vesterhus MN. , et al. Vascular adhesion protein-1 is elevated in primary sclerosing cholangitis, is predictive of clinical outcome and facilitates recruitment of gut-tropic lymphocytes to liver in a substrate-dependent manner. Gut 2017 ;gutjnl-2016-312354
- 180 Cabreiro F, Au C, Leung KY. , et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013; 153 (01) 228-239
- 181 Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 2016; 14 (05) 273-287
- 182 Vétizou M, Pitt JM, Daillère R. , et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350 (6264): 1079-1084
- 183 Lorent K, Gong W, Koo KA. , et al. Identification of a plant isoflavonoid that causes biliary atresia. Sci Transl Med 2015; 7 (286) 286ra67
- 184 Weismüller TJ, Trivedi PJ, Bergquist A. , et al; International PSC Study Group. Patient Age, Sex, and Inflammatory Bowel Disease Phenotype Associate With Course of Primary Sclerosing Cholangitis. Gastroenterology 2017; 152 (08) 1975-1984.e8
- 185 Cho I, Yamanishi S, Cox L. , et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 2012; 488 (7413): 621-626
- 186 Cox LM, Yamanishi S, Sohn J. , et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 2014; 158 (04) 705-721