Synlett, Inhaltsverzeichnis Synlett 2018; 29(18): 2404-2407DOI: 10.1055/s-0037-1609629 letter © Georg Thieme Verlag Stuttgart · New York Revisiting Sodium Hypochlorite Pentahydrate (NaOCl·5H2O) for the Oxidation of Alcohols in Acetonitrile without Nitroxyl Radicals Tsunehisa Hirashita * Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan eMail: hirasita@nitech.ac.jp , Yuto Sugihara , Shota Ishikawa , Yohei Naito , Yuta Matsukawa , Shuki Araki › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract Sodium hypochlorite pentahydrate (NaOCl·5H2O) is capable of oxidizing alcohols in acetonitrile at 20 °C without the use of catalysts. The oxidation is selective to allylic, benzylic, and secondary alcohols. Aliphatic primary alcohols are not oxidized. Key words Key wordsoxidation - alcohol - sodium hypochlorite pentahydrate - aldehyde - ketone Volltext Referenzen References and Notes 1a Fernandez MI. Tojo G. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer; New York: 2006 1b Stahl SS. Alsters PL. Liquid Phase Aerobic Oxidation Catalysis . Wiley-VCH; Weinheim, Germany: 2016 2a Anelli PL. Biffi C. Montanari F. Quici S. J. Org. Chem. 1987; 52: 2559 2b Sheldon RA. Arends IW. C. E. Adv. Synth. Catal. 2004; 346: 1051 2c Shibuya M. Tomizawa M. Suzuki I. Iwabichi Y. J. Am. Chem. Soc. 2006; 128: 8412 2d Janssen MH. A. Chesa Castellana JF. Jackman H. Dunn PJ. Sheldon RA. Green Chem. 2011; 13: 905 3a Okada T. Asawa T. Sugiyama Y. Kirihara M. Iwai T. Kimura Y. Synlett 2014; 25: 596 3b Okada T. Matsumuro H. Iwai T. Kitagawa S. Yamazaki K. Akiyama T. Asawa T. Sugiyama Y. Kimura Y. Kirihara M. Chem. Lett. 2015; 44: 185 3c Okada T. Asawa T. Sugiyama Y. Iwai T. Kirihara M. Kimura Y. Tetrahedron 2016; 72: 2818 3d Kirihara M. Okada T. Sugiyama Y. Akiyoshi M. Matsunaga T. Kimura Y. Org. Process Res. Dev. 2017; 21: 1925 4 Hirashita T. Nakanishi M. Uchida T. Yamamoto M. Araki S. Arends IW. C. E. Sheldon RA. ChemCatChem 2016; 8: 2704 5a Stevens RV. Chapman KT. Weller HN. J. Org. Chem. 1980; 45: 2030 5b Stevens RV. Chapman KT. Stubbs CA. Tam WW. Albizati KF. Tetrahedron Lett. 1982; 23: 4647 6 Fukuda N. Kajiwara T. Katou T. Majima K. Ikemoto T. Synlett 2013; 24: 1438 7 Oxidation of 2-Octanol; Typical Procedure (entry 10, Table 2): To a suspension of NaOCl·5H2O crystals (123 mg, 0.75 mmol) in acetonitrile (5.0 mL), was added 2-octanol (65 mg, 0.50 mmol), and the resulting mixture was stirred at 20 °C. Aliquots were analyzed at intervals by GC after passing through a short SiO2 column (eluting with EtOAc/hexane, 9:1). The reaction was stopped after 1 h by quenching with Na2SO3 (94 mg, 0.75 mmol) and the mixture was diluted with CH2Cl2 (10 mL). The yield of 2-octanone (tR : 2.1 min) and the recovery of 2-octanol (tR : 2.8 min) were determined to be 91% and 2%, respectively, by GC analysis based on a calibration curve using authentic samples. 8 Oxidation of 1,5-hexanediol (Scheme 3): To a suspension of NaOCl·5H2O crystals (123 mg, 0.75 mmol) in acetonitrile (5.0 mL), was added 1,5-hexanediol (59 mg, 0.50 mmol), and the resulting mixture was stirred at 20 °C. The reaction was stopped after 1 h by quenching with Na2SO3 (95 mg, 0.75 mmol). The product was analyzed by 1H NMR and found to be 6-hydroxyhexane-2-one (31%, δ = 2.49 ppm, 2 H) and 1,5-hexanediol (49% recovery, δ = 1.20 ppm, 3 H) based on a standard material (triphenylmethane δ = 5.55 ppm, 1 H). Zusatzmaterial Zusatzmaterial Supporting Information