Synthesis 2019; 51(02): 371-383
DOI: 10.1055/s-0037-1609638
short review
© Georg Thieme Verlag Stuttgart · New York

Applications of Rozen’s Reagent in Oxygen-Transfer and C–H Activation Reactions

a   Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: singh@orgsyn.in
,
Kulbir Kulbir
a   Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: singh@orgsyn.in
,
Tarang Gupta
b   Chemistry Department, D. A. V. College for Girls, Yamunanagar, Haryana, 135001, India
,
Rajneesh Kaur
a   Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: singh@orgsyn.in
,
Raman Singh
a   Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Haryana, 133207, India   Email: singh@orgsyn.in
› Author Affiliations
Science and engineering research board (SERB), New Delhi is acknowledged for funding (CS/2014/017).
Further Information

Publication History

Received: 10.10.2018/

Accepted after revision: 11 October 2018

Publication Date:
22 November 2018 (online)


Dedicated to Professor Shlomo Rozen for his pioneering work in developing the best oxygen-transfer reagent.

Abstract

Rozen’s reagent (hypofluorous acid–acetonitrile complex, HOF·MeCN) is a robust nonspecific oxygen-transfer reagent and became a proven tool for the oxidation of difficult-to-oxidize molecules. It has been applied to instant oxygen transfers to functional groups such as alkenes, alkynes, and aromatic hydrocarbons, epoxidation, oxidation of alcohols, amines, and alkynes, oxygen-transfer reactions with nitrogen, phosphorus, and sulfur-containing substrates, and α-hydroxylation of carbonyl groups. Apart from being a potential green oxidizing agent, the complex has applications in 18O-labeling and C–H functionalization strategies. Recent uses of Rozen’s reagent in developing nanomaterials and oxidized expanded graphite indicate the enormous potential of the reagent. These aspects are discussed in this review.

1 Introduction

2 Synthesis and Physical Properties

3 Safety and Handling

4 Oxygen-Transfer Reactions

4.1 General Mechanism of Oxygen Transfer

4.2 Epoxidation

4.3 Oxidation of Alkynes

4.4 Oxidation of Aromatic Alcohols and Phenols

4.5 Oxidation of Nitrogen-Containing Compounds

4.6 Conversion of Aldehydes into Nitriles

4.7 Oxidation of Alcohols and Ethers

4.8 Oxidation of Sulfur-Containing Compounds

4.9 Oxygen-Transfer Reaction with Phosphine, Phosphite, and Phosphinite Compounds

5 C–H Activation Reactions

5.1 Hydroxylation of Nonactivated Tertiary Saturated Carbon Center

5.2 Hydroxylation of Aromatic Carbon Center

5.3 α-Hydroxylation of Carbonyl Group

5.4 Activation of α-Hydrogens of α-Amino Acids

6 Other Uses

7 Green Chemistry and Rozen’s Reagent

8 Experimental Problems

9 Further Applications

10 Conclusions