Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(12): 1664-1668
DOI: 10.1055/s-0037-1609752
DOI: 10.1055/s-0037-1609752
letter
Room Temperature, Metal-Free, Radical Chloroazidation of 1,6-Enynes
This research is sponsored by the Natural Science Foundation of Zhejiang Province (No. LQ18B020002), State Key Laboratory of Analytical Chemistry for Life Science (No. SKLACLS1804), the Open Subject of State Key Laboratory of Chemo/Biosensing and Chemometrics (2017016), Education Foundation of Zhejiang Province (No. Y201737123), Research Funds of NBU (No. ZX2016000706), Foundation of Ningbo University (No. XYL17009), and the K. C. Wong Magna Fund in Ningbo University. Dr. G.-P. Ge also thank the Ningbo Municipal Natural Science Foundation (No. 2016A610052).Further Information
Publication History
Received: 14 February 2018
Accepted after revision: 15 April 2018
Publication Date:
17 May 2018 (online)

Abstract
Without employing any transition metal, a mild, practical, and environmentally attractive methodology has been developed for the chloroazidation of 1,6-enynes at room temperature. In this radical cascade process, three new chemical bonds, including C–Cl (Br, I), C–N, and C–C bonds, are formed in one step for the construction of 2-pyrrolidinones. The method is valuable because of its mild reaction conditions, operational simplicity, and the rich biological activity of the corresponding 2-pyrrolidinone products.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609752.
- Supporting Information
-
References
- 1a Anderson JC. Horsfall LR. Kalogirou AS. Mills MR. Stepney GJ. Tizzard GJ. J. Org. Chem. 2012; 77: 6186
- 1b Yang D. Lian G.-Y. Yang H.-F. Yu J.-D. Zhang D.-W. Gao X. J. Org. Chem. 2009; 74: 8610
- 1c Dawangea M. Parekha N. Kumbhara A. Dehaenb W. Kusurkar R. New J. Chem. 2017; 41: 3612
- 1d Martinez-Ariza G. Ayaz M. Roberts SA. Rabanal-Leýn WA. Arratia-Pérez R. Hulme C. Angew. Chem. Int. Ed. 2015; 54: 11672
- 1e Du X.-L. Yin D.-W. Ge Z.-M. Wang X. Li R.-T. RSC Adv. 2017; 7: 24547
- 2 Cao X. Cheng X. Xuan J. Org. Lett. 2018; 20: 449
- 3a Brabandt W. Kimpe N. J. Org. Chem. 2005; 70: 8717
- 3b Banfi L. Guanti G. Rasparini M. Eur. J. Org. Chem. 2003; 1319
- 3c Alcaide B. Almendros P. Alonso JM. J. Org. Chem. 2004; 69: 993
- 3d Park J.-H. Ha J.-R. Oh S.-J. Kim JA. Shin D.-S. Won T.-J. Lam Y.-F. Ahn C. Tetrahedron Lett. 2005; 46: 175
- 3e Alcaide B. Almendros P. Cabrero G. Ruiz MP. Org. Lett. 2005; 7: 3981
- 3f Sakai T. Yamada K. Tomioka K. Chem. Asian J. 2008; 3: 1486
- 4a Roberson CW. Woerpel KA. J. Org. Chem. 1999; 64: 1434
- 4b Krawczyk H. Albrecht L. Wojciechowski J. Wolf WM. Krajewska U. Rozalski M. Tetrahedron 2008; 64: 6307
- 4c Basavaiah D. Rao JS. Tetrahedron Lett. 2004; 45: 1621
- 4d Rodriguez-Soria V. Quintero L. Sartillo-Piscil F. Tetrahedron 2008; 64: 2750
- 4e Berlin S. Ericsson C. Engman L. J. Org. Chem. 2003; 68: 8386
- 4f Lettan RB. Galliford CV. Woodward CC. Scheidt KA. J. Am. Chem. Soc. 2009; 131: 8805
- 4g Comesse S. Sanselme M. Daich A. J. Org. Chem. 2008; 73: 5566
- 4h Sun P.-P. Chang M.-Y. Chiang M.-Y. Chang N.-C. Org. Lett. 2003; 5: 1761
- 5a Snider BB. Neubert BJ. J. Org. Chem. 2004; 69: 8952
- 5b Gesmundo NJ. Grandjean M. Nicewicz DA. Org. Lett. 2015; 17: 1316
- 5c Teng H.-L. Luo F.-L. Tao H.-Y. Wang C.-J. Org. Lett. 2011; 13: 5600
- 5d Espinosa-Jalapa NÁ. Ke D. Nebra N. Le Goanvic L. Mallet-Ladeira S. Monot J. Martin-Vaca B. Bourissou D. ACS Catal. 2014; 4: 3605
- 6a Hajra S. Bhowmick M. Sinha D. J. Org. Chem. 2006; 71: 9237
- 6b Egami H. Yoneda T. Uku M. Ide T. Kawato Y. Hamashima Y. J. Org. Chem. 2016; 81: 4020
- 7 Valiulin RA. Mamidyala S. Finn MG. J. Org. Chem. 2015; 80: 2740
- 8 Chen L. Xing HT. Zhang HB. Jiang Z.-X. Yang Z.-G. Org. Biomol. Chem. 2016; 14: 7463
- 9 Leforestier B. Vögtle M. Synlett 2016; 27: 1957
- 10 Wang A.-F. Zhu Y.-L. Wang S.-L. Hao W.-J. Li G.-G. Tu S.-J. Jiang B. J. Org. Chem. 2016; 81: 1099
- 11a Nie L.-H. Yu J.-G. Jaroniec M. Tao FF. Catal. Sci. Technol. 2016; 6: 3649
- 11b Wang J.-L. Zhang P.-Y. Li J.-G. Jiang C.-J. Yunus R. Kim J. Environ. Sci. Technol. 2015; 49: 12372
- 12a Wei W.-T. Zhu W.-M. Ying W.-W. Wang Y.-N. Bao W.-H. Gao L.-H. Luo Y.-J. Liang HZ. Adv. Synth. Catal. 2017; 359: 3551
- 12b Wei W.-T. Zhu W.-M. Ying W.-W. Wu Y. Huang Y.-L. Liang HZ. Org. Biomol. Chem. 2017; 15: 5254
- 12c Wei W.-T. Zhu W.-M. Liang WD. Wu Y. Huang H.-Y. Huang Y.-L. Luo FJ. Liang HZ. Synlett 2017; 28: 2153
- 12d Zhu W.-M. Bao W.-H. Ying W.-W. Chen W.-T. Huang Y.-L. Ge G.-P. Chen G.-P. Wei W.-T. Asian J. Org. Chem. 2018; 7: 337
- 13 General Procedure: To a Schlenk tube were added 1,6-enyne (0.2 mmol), TMSN3 (0.4 mmol), NCS (0.4 mmol), PIDA (0.4 mmol, 2.0 equiv), and DCE (2 mL). The mixture was then stirred open in air at r.t. for the indicated time until complete consumption of starting material as monitored by TLC analysis. When the reaction was complete, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate) to afford the desired product 4, which was analyzed by 1H NMR, 13C NMR, and HRMS (see the Supporting Information). Typical Data for a Representative Compound: 3-(Azidomethyl)-4-(chloromethylene)-3-methyl-1-phenylpyrrolidin-2-one (4aaa): Yield: 38.6 mg (70%); yellow oil; 9:1 Z/E mixture. 1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 8.4 Hz, 2 H), 7.42 (t, J = 7.6 Hz, 2 H), 7.21 (t, J = 7.6 Hz, 1 H), 6.44 (s, 0.1 H), 6.23 (s, 0.9 H), 4.52 (d, J = 2.0 Hz, 2 H), 3.73 (d, J = 11.6 Hz, 1 H), 3.45 (d, J = 12.0 Hz, 1 H), 1.38 (s, 2.7 H), 1.37 (s, 0.3 H); 13C NMR (100 MHz, CDCl3): δ = 173.7, 138.4, 138.1, 129.1, 129.0, 127.6, 127.5, 125.4 (2), 120.3, 120.2, 114.6, 58.9, 50.6, 50.3, 21.8; HRMS (ESI): m/z [M+H]+ calcd for C13H14ClN4O+: 277.0851; found: 277.0848.
- 14 Sun Y.-M. Yu L.-Z. Zhu Z.-Z. Hu X.-B. Gao Y.-N. Shi M. Org. Biomol. Chem. 2017; 15: 634
- 15a Zhao Y.-Y. Hu Y.-C. Wang H.-L. Li X.-C. Wan B.-S. J. Org. Chem. 2016; 81: 4412
- 15b Meng Q. Chen F. Yu W. Han B. Org. Lett. 2017; 19: 5186
- 15c Hu M. Fan J.-H. Liu Y. Ouyang X.-H. Song R.-J. Li J.-H. Angew. Chem. Int. Ed. 2015; 54: 9577
- 15d Shen Z.-J. Wu Y.-N. He C.-L. He L. Hao W.-J. Wang A.-F. Tu S.-J. Jiang B. Chem. Commun. 2018; 445
For selected papers, see:
For selected papers, see:
For selected papers, see:
For selected papers, see:
For selected examples, see: