Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(24): 4915-4921
DOI: 10.1055/s-0037-1609753
DOI: 10.1055/s-0037-1609753
paper
Chromium-Catalyzed Asymmetric Dearomatization–Addition Reactions of Halomethyloxazoles and Indoles
We are grateful to NSFC-21772218, 21421091, XDB20000000, the ‘Thousand Plan’ Youth program, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province (2012-318) and the Construct Program of the Key Discipline in Hunan Province.Further Information
Publication History
Received: 06 February 2018
Accepted after revision: 09 April 2018
Publication Date:
29 May 2018 (online)
Abstract
The asymmetric dearomatization–addition reaction of halomethyloxazoles and halomethylindoles with aldehydes is realized in the presence of a carbazole-based bisoxazoline CrCl2 complex to afford the corresponding enantioenriched, hydroxylated oxazoline and indoline products. The observed excellent chemo-, regio-, diastereo- and enantioselectivities are notable advantages of this protocol. The strategy established in this study is expected to find application in the synthesis of azaheterocycles with biological significance and useful functionalities.
Key words
asymmetric–dearomatization - chromium catalysis - oxazolines - indolines - azaheterocyclesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609753.
- Supporting Information
-
References
- 1a Nakamura I. Yamamoto Y. Chem. Rev. 2004; 104: 2127
- 1b Progress in Heterocyclic Chemistry . Vol. 20. Gribble GW. Joule JA. Elsevier; Oxford: 2008. ; and others in this series
- 1c Comprehensive Heterocyclic Chemistry III . Katritzky AR. Ramsden CA. Scriven EF. V. Taylor RJ. K. Pergamon; Oxford: 2008
- 1d Eftekhari-Sis B. Zirak M. Akbari A. Chem. Rev. 2013; 113: 2958
- 2a Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
- 2b Nandy JP. Prakesch M. Khadem S. Reddy PT. Sharma U. Arya P. Chem. Rev. 2009; 109: 1999
- 2c Hargaden GC. Guiry PJ. Chem. Rev. 2009; 109: 2505
- 2d Desimoni G. Faita G. Jørgensen KA. Chem. Rev. 2011; 111: 284
- 3 Hummel JR. Boerth JA. Ellman JA. Chem. Rev. 2017; 117: 9163
- 4a Zhuo C.-X. Zhang W. You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 4b Wang D.-S. Chen Q.-A. Lu S.-M. Zhou Y.-G. Chem. Rev. 2012; 112: 2557
- 4c Zhuo C.-X. Zheng C. You S.-L. Acc. Chem. Res. 2014; 47: 2558
- 4d Yang Z.-P. Zheng C. Huang L. Qian C. You S.-L. Angew. Chem. Int. Ed. 2017; 56: 1530
- 5a Yang Z.-P. Wu Q.-F. Shao W. You S.-L. J. Am. Chem. Soc. 2015; 137: 15899
- 5b Zheng C. You S.-L. Chem 2016; 1: 830
- 5c Wang Y. Zheng C. You S.-L. Angew. Chem. Int. Ed. 2017; 56: 15093
- 6a Bao M. Nakamura H. Yamamoto Y. J. Am. Chem. Soc. 2001; 123: 759
- 6b Peng B. Zhang S. Yu X. Feng X. Bao M. Org. Lett. 2011; 13: 5402
- 7a Tian Q. Bai J. Chen B. Zhang G. Org. Lett. 2016; 18: 1828
- 7b Chen W. Bai J. Zhang G. Adv. Synth. Catal. 2017; 359: 1227
- 8a Chen W. Yang Q. Zhou T. Tian Q. Zhang G. Org. Lett. 2015; 17: 5236
- 8b Xiong Y. Zhang G. Org. Lett. 2016; 18: 5094
- 8c Tian Q. Zhang G. Synthesis 2016; 48: 4038
- 8d Guo R. Yang Q. Tian Q. Zhang G. Sci. Rep. 2017; 7: 4873
- 8e Ji H. Tian Q. Xiang J. Zhang G. Chin. Chem. Lett. 2017; 28: 1182
- 8f Xiong Y. Zhang G. J. Am. Chem. Soc. 2018; 140: 2735
- 9a Okude Y. Hirano S. Hiyama T. Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
- 9b Jin H.-L. Uenishi J.-I. Christ WJ. Kishi Y. J. Am. Chem. Soc. 1986; 108: 5644
- 9c Takai K. Tagashira M. Kuroda T. Oshima K. Utimoto K. Nozaki H. J. Am. Chem. Soc. 1986; 108: 6048
- 9d Fürstner A. Chem. Rev. 1999; 99: 991
- 9e Inoue M. Suzuki T. Nakada M. J. Am. Chem. Soc. 2003; 125: 1140
- 9f Xia G.-Y. Yamamoto H. J. Am. Chem. Soc. 2007; 129: 496
- 9g Kim D. Dong C.-G. Kim JT. Guo H.-B. Huang J. Tiseni PS. Kishi Y. J. Am. Chem. Soc. 2009; 131: 15636
- 9h Harper KC. Sigman MS. Science 2011; 333: 1875
- 9i Deng Q.-H. Wadepohl H. Gade LH. Chem. Eur. J. 2011; 17: 14922
- 9j Gil A. Albericio F. Alvarez M. Chem. Rev. 2017; 117: 8420
- 9k Yahata K. Ye N. Iso K. Ai Y. Lee J. Kishi Y. J. Org. Chem. 2017; 87: 8808
- 9l Yahata K. Ye N. Iso K. Naini S. Yamashita S. Ai Y. Kishi Y. J. Org. Chem. 2017; 87: 8792
- 9m Yahata K. Ye N. Ai Y. Iso K. Kishi Y. Angew. Chem. Int. Ed. 2017; 56: 10796
- 10a Fürstner A. Shi N. J. Am. Chem. Soc. 1996; 118: 2533
- 10b Fürstner A. Shi N. J. Am. Chem. Soc. 1996; 118: 12349
- 10c Fürstner A. Wuchrer M. Chem. Eur. J. 2006; 12: 76
For selected examples of Nozaki–Hiyama–Kishi reactions, see: