Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(12): 1607-1610
DOI: 10.1055/s-0037-1609755
DOI: 10.1055/s-0037-1609755
letter
Asymmetric Reduction of Trifluoromethyl Alkynyl Ketimines by Chiral Phosphoric Acid and Benzothiazoline
A Grant-in-Aid for Scientific Research on Innovative Areas ‘Advanced Transformation Organocatalysis’ from MEXT, Japan, a Grant-in-Aid for Scientific Research from JSPS (17H03060).Further Information
Publication History
Received: 24 March 2018
Accepted after revision: 17 April 2018
Publication Date:
16 May 2018 (online)
![](https://www.thieme-connect.de/media/synlett/201812/lookinside/thumbnails/st-2018-b0184-l_10-1055_s-0037-1609755-1.jpg)
Abstract
An enantioselective transfer hydrogenation reaction of alkynyl ketimine bearing a trifluoromethyl group was accomplished. Chemoselective reduction of ketimine was achieved by the combined use of chiral phosphoric acid and benzothiazoline to give α-trifluoromethyl propargylamine in good to high yields and with excellent enantioselectivity.
Key words
alkynyl ketimine - chiral phosphoric acid - benzothiazoline - asymmetric transfer hydrogenation reaction - trifluoromethyl groupSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1609755.
- Supporting Information
-
References and Notes
- 1a Mikami K. Itoh Y. Yamanaka M. Chem. Rev. 2004; 104: 1
- 1b Böhm H.-J. Banner D. Bendels S. Kansy M. Kuhn B. Müller K. Obst-Sander U. Stahl M. ChemBioChem. 2004; 5: 637
- 1c Muller K. Faeh C. Diederich F. Science 2007; 317: 1881
- 1d Cahard D. Bizet V. Chem. Soc. Rev. 2014; 43: 135
- 1e Wang J. Sánchez-Roselló M. Aceña JL. Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
- 2a Dilman AD. Levin VV. Eur. J. Org. Chem. 2011; 831
- 2b Liu X. Xu C. Wang M. Liu Q. Chem. Rev. 2015; 115: 683
- 2c Yang X. Wu T. Phipps RJ. Toste FD. Chem. Rev. 2015; 115: 826
- 3a Török B. Prakash GK. S. Adv. Synth. Catal. 2003; 345: 165
- 3b Cheng G. Xia B. Wu Q. Lin X. RSC Adv. 2013; 3: 9820
- 3c Cheng G. Wu Q. Shang Z. Liang X. Lin X. ChemCatChem 2014; 6: 2129
- 4a Prakash GK. S. Mandal M. Olah GA. Angew. Chem. Int. Ed. 2001; 40: 589
- 4b Kawai H. Kusuda A. Nakamura S. Shiro M. Shibata N. Angew. Chem. Int. Ed. 2009; 48: 6324
- 4c Bernardi L. Indrigo E. Pollicino S. Ricci A. Chem. Commun. 2012; 48: 1428
- 5a Ruano JL. G. Alemán J. Catalán S. Marcos V. Monteagudo S. Parra A. del Pozo C. Fustero S. Angew. Chem. Int. Ed. 2008; 47: 7941
- 5b Enders D. Gottfried K. Raabe G. Adv. Synth. Catal. 2010; 352: 3147
- 5c Liu Y.-L. Shi T.-D. Zhou F. Zhao X.-L. Wang X. Zhou J. Org. Lett. 2011; 13: 3826
- 5d Liu Y.-L. Zeng X.-P. Zhou J. Chem. Asian J. 2012; 7: 1759
- 5e Morisaki K. Morimoto H. Ohshima T. Chem. Commun. 2017; 53: 6319
- 6a Abe H. Amii H. Uneyama K. Org. Lett. 2001; 3: 313
- 6b Chen M.-W. Duan Y. Chen Q.-A. Wang D.-S. Yu C.-B. Zhou Y.-G. Org. Lett. 2010; 12: 5075
- 6c Dai X. Cahard D. Adv. Synth. Catal. 2014; 356: 1317
- 6d Chen Z.-P. Chen M.-W. Shi L. Yu C.-B. Zhou Y.-G. Chem. Sci. 2015; 6: 3415
- 6e Wu M. Cheng T. Ji M. Liu G. J. Org. Chem. 2015; 80: 3708
- 6f Chen Z.-P. Hu S.-B. Zhou J. Zhou Y.-G. ACS Catal. 2015; 5: 6086
- 6g Chen Z.-P. Hu S.-B. Chen M.-W. Zhou Y.-G. Org. Lett. 2016; 18: 2676
- 6h Zhang K. An J. Su Y. Zhang J. Wang Z. Cheng T. Liu G. ACS Catal. 2016; 6: 6229
- 7a Demir AS. Sesenoglu Ö. Gerçek-Arkin Z. Tetrahedron: Asymmetry 2001; 12: 2309
- 7b Gosselin F. O’Shea PD. Roy S. Reamer RA. Chen C. Volante RP. Org. Lett. 2005; 7: 355
- 7c Henseler A. Kato M. Mori K. Akiyama T. Angew. Chem. Int. Ed. 2011; 50: 8180
- 7d Genoni A. Benaglia M. Massolo E. Rossi S. Chem. Commun. 2013; 49: 8365
- 8a Bravo P. Cavicchio G. Crucianelli M. Markovsky AL. Volonterio A. Zanda M. Synlett 1996; 887
- 8b Fustero S. Soler JG. Bartolomé A. Roselló MS. Org. Lett. 2003; 5: 2707
- 8c Kawano Y. Mukaiyama T. Chem. Lett. 2005; 34: 894
- 8d Liu Z.-J. Liu J.-T. Chem. Commun. 2008; 5233
- 8e Fernández I. Valdivia V. Alcudia A. Chelouan A. Khiar N. Eur. J. Org. Chem. 2010; 1502
- 8f Hernández-Rodríguez M. Castillo-Hernández T. Trejo-Huizar KE. Synthesis 2011; 2817
- 8g Fustero S. Ibáñez I. Barrio P. Maestro MA. Catalán S. Org. Lett. 2013; 15: 832
- 8h Pedroni J. Cramer N. J. Am. Chem. Soc. 2017; 139: 12398
- 9a Sakai T. Yan F. Uneyama K. Synlett 1995; 753
- 9b Sakai T. Yan F. Kashino S. Uneyama K. Tetrahedron 1996; 52: 233
- 9c Ohkura H. Handa M. Katagiri T. Uneyama K. J. Org. Chem. 2002; 67: 2692
- 9d Wu Y. Deng L. J. Am. Chem. Soc. 2012; 134: 14334
- 9e Zhou X. Wu Y. Deng L. J. Am. Chem. Soc. 2016; 138: 12297
- 10a Akiyama T. Itoh J. Yokota K. Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
- 10b Uraguchi D. Terada M. J. Am. Chem. Soc. 2004; 126: 5356
- 10c Akiyama T. Chem. Rev. 2007; 107: 5744
- 10d Terada M. Synthesis 2010; 1929
- 10e Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
- 10f Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2017; 117: 10608
- 10g Merad J. Lalli G. Bernadat G. Maury J. Masson G. Chem. Eur. J. 2018; 24: 3925
- 11a Zhu C. Akiyama T. Org. Lett. 2009; 11: 4180
- 11b Zhu C. Saito K. Yamanaka M. Akiyama T. Acc. Chem. Res. 2015; 48: 388
- 11c Shibata Y. Yamanaka M. J. Org. Chem. 2013; 78: 3731
- 12 Chen M.-W. Wu B. Chen Z.-P. Shi L. Zhou Y.-G. Org. Lett. 2016; 18: 4650
- 13 General Procedure of Asymmetric Reduction Under a nitrogen atmosphere, a mixture of ketimine 1a (0.10 mmol), benzothiazoline (0.12 mmol, 1.2 equiv), 5 Å MS (50 mg, 100 wt%, activated), and chiral phosphoric acid (0.010 mmol, 10 mol%) in CH2Cl2 (1.0 mL) was heated to reflux for 24 h, and the reaction was monitored with TLC. After completion of the reaction, the reaction was stopped by adding saturated aqueous NaHCO3. The crude mixture was extracted with EtOAc (3×) and the combined organic extracts were washed with brine, dried with Na2SO4, and concentrated in vacuo. The residue was purified by preparative TLC to give the trifluoromethyl propargyl amine 4a (80%, 96% ee). (R)-(–)-4-Methoxy-N-(1,1,1-trifluoro-4-phenylbut-3-yn-2yl)aniline (4a, Table 1 Entry 1) Oil; yield 80%. 1H NMR (400 MHz, CDCl3): δ = 3.74 (1 H, br s), 3.77 (3 H, s), 4.73–4.78 (1 H, m), 6.78 (2 H, d, J = 9.2 Hz), 6.83 (2 H, d, J = 9.2 Hz), 7.30–7.45 (5 H, m). 13C NMR (100 MHz, CDCl3): δ = 52.1 (q, J = 33.8 Hz), 80.8 (q, J = 2.2 Hz), 86.2, 114.8, 116.9, 121.4, 123.7 (q, J = 280 Hz), 128.3, 128.5, 129.1, 131.9, 138.8, 154.1. 19F NMR (375 MHz, CDCl3): δ = 77.0 (3 F, d, J = 6.0 Hz).
- 14a Rueping M. Sugiono E. Azap C. Theissmann T. Bolte M. Org. Lett. 2005; 7: 3781
- 14b Hoffmann S. Seayad A. List B. Angew. Chem. Int. Ed. 2005; 44: 7424
- 14c Storer RI. Carrera DE. Ni Y. MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
For reviews, see:
For recent reviews, see:
For examples for nucleophilic addition of trifluoromethyl group, see:
For examples for nucleophilic addition of alkyl, alkynyl and aryl groups, see:
For asymmetric reduction using transition-metal catalysts, see:
For asymmetric reduction using organocatalysts, see:
For selected examples using chiral substrates, see:
For seminal papers of chiral phosphoric acid catalysis, see:
For reviews, see:
For the calculation of chiral phosphoric acid catalyzed transfer hydrogenation using benzothiazoline, see:
For pioneering works on chiral phosphoric acid catalyzed transfer hydrogenation by use of Hantzsch ester as a hydrogen donor, see: