Synlett, Table of Contents Synlett 2018; 29(11): 1451-1554DOI: 10.1055/s-0037-1610132 letter © Georg Thieme Verlag Stuttgart · New York Pharmaceutical-Oriented Methoxylation of Aryl C(sp2)–H Bonds using Copper Catalysts Guofu Zhang a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China Email: dingcr@zjut.edu.cn , Jianfei Zhu a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China Email: dingcr@zjut.edu.cn , Chaolai Tong b Jianxing Honor College, Zhejiang University of Technology, Hangzhou 310014, P. R. of China , Chengrong Ding* a College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China Email: dingcr@zjut.edu.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A pharmaceutical-oriented, copper(II)-catalyzed methoxylation of aryl C(sp2)–H bonds has been developed. This simple and environmentally benign reaction system occurs efficiently using oxygen as oxidant with broad substrate scope and high functional group tolerance. Key words Key wordspharmaceutical development - C–H methoxylation - copper catalysis - oxygen - DMEDA Full Text References References and Notes 1a Ohkawa S. Fukatsu K. Miki S. Hashimoto T. Sakamoto J. Doi T. Nagai Y. Aono T. J. Med. Chem. 1997; 40: 559 1b Esteki M. Khayamian T. Chem. Biol. Drug Des. 2008; 72: 409 1c Kubo K. Kohara Y. Imamiya E. Sugiura Y. Inada Y. Furukawa Y. Nishikawa K. Naka T. J. Med. Chem. 1993; 36: 2182 2a Hartwig JF. Nature 2008; 455: 314 2b Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400 2c Liu B. Shi B.-F. Tetrahedron Lett. 2015; 56: 15 2d Krylov IB. Vil’ VA. Terent’ev AO. Beilstein J. Org. Chem. 2015; 11: 92 2e Monnier F. Taillefer M. Angew. Chem. Int. Ed. 2009; 48: 6954 2f Qiao JX. Lam PY. S. Synthesis 2011; 829 2g Ma D. Cai Q. Org. Lett. 2003; 5: 3799 2h Cai Q. Zou B. Ma D. Angew. Chem. Int. Ed. 2006; 45: 1276 2i Cai Q. He G. Ma D. J. Org. Chem. 2006; 71: 5268 2j Fan M. Zhou W. Jiang Y. Ma D. Angew. Chem. Int. Ed. 2016; 55: 6211 3a Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236 3b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215 3c Ackermann L. Chem. Rev. 2011; 111: 1315 3d Li CJ. Acc. Chem. Res. 2009; 42: 335 3e Patureau FW. Wencel-Delord J. Glorius F. Aldrichimica Acta 2012; 45: 31 3f Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212 3g Gunanathan C. Milstein D. Acc. Chem. Res. 2011; 44: 588 4a Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900 4b Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107 4c Ackermann L. Acc. Chem. Res. 2014; 47: 281 4d Leow D. Li G. Mei TS. Yu JQ. Nature 2012; 486: 518 4e Daugulis O. Do HQ. Shabashov D. Acc. Chem. Res. 2009; 42: 1074 4f Li BJ. Yang SD. Shi ZJ. Synlett 2008; 949 4g Zhang M. Zhang Y. Jie X. Zhao H. Li G. Su W. Org. Chem. Front. 2014; 1: 843 5a Liu W. Wang DY. Zhao YL. Yi F. Chen JM. Adv. Synth. Catal. 2016; 358: 1968 5b Zhang YF. Zhao HW. Wang H. Wei JB. Shi ZJ. Angew. Chem. Int. Ed. 2015; 54: 13686 5c Wang Z. Ni JZ. Kuninobu Y. Kanai M. Angew. Chem. Int. Ed. 2014; 53: 3496 5d Shibata T. Matsuo Y. Adv. Synth. Catal. 2014; 356: 1516 5e Dastbaravardeh N. Kirchner K. Schnurch M. Mihovilovic MD. J. Org. Chem. 2013; 78: 658 6a Rothman KJ. Michels KB. N. Engl. J. Med. 1994; 331: 394 6b Grissmer S. Nguyen AN. Aiyar J. Hanson DC. Mather RJ. Gutman GA. Karmilowicz MJ. Auperin DD. Chandy KG. Mol. Pharmacol. 1994; 45: 1227 6c Echt DS. Liebson R. Mitchell LB. Peters RW. Obiasmanno D. Barker AH. Arensberg D. Baker A. Friedman L. Greene HL. Huther ML. Richardson DW. N. Engl. J. Med. 1991; 324: 781 6d Marty M. Pouillart P. Scholl S. Droz JP. Azab M. Brion N. Pujadelauraine E. Paule B. Paes D. Bons J. N. Engl. J. Med. 1990; 322: 816 7a Chen F.-J. Zhao S. Hu F. Chen K. Zhang Q. Zhang S.-Q. Shi B.-F. Chem. Sci. 2013; 4: 4187 7b Zhang C. Sun P. J. Org. Chem. 2014; 79: 8457 7c Li S. Zhu W. Gao F. Li C. Wang J. Liu H. J. Org. Chem. 2017; 82: 126 7d Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 1107 7e Shi WJ. Shi ZJ. Chin. J. Chem. 2014; 32: 974 7f Shan G. Yang X. Zong Y. Rao Y. Angew. Chem. Int. Ed. 2013; 52: 13606 7g Kamal A. Srinivasulu V. Sathish M. Tangella Y. Nayak VL. Rao MP. N. Shankaraiah N. Nagesh N. Asian J. Org. Chem. 2014; 3: 68 7h Enthaler S. Company A. Chem. Soc. Rev. 2011; 40: 4912 8a Mousseau JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412 8b Daugulis O. Do HQ. Shabashov D. Acc. Chem. Res. 2009; 42: 1074 8c Ishikawa K. Aoki K. J. Jpn. Inst. Met. 2007; 71: 845 8d Gamez P. Aubel PG. Driessen WL. Reedijk J. Chem. Soc. Rev. 2001; 30: 376 9a Thomas AM. Sujatha A. Anilkumar G. RSC Adv. 2014; 4: 21688 9b Modak A. Mondal J. Bhaumik A. Green Chem. 2012; 14: 2840 9c Zhang QH. Deng WP. Wang Y. Chem. Commun. 2011; 9275 9d Zhang M. Appl. Organomet. Chem. 2010; 24: 269 10a Lu WK. Xu H. Shen ZM. Org. Biomol. Chem. 2017; 15: 1261 10b Yu MW. Wang ZQ. Hu JB. Li SL. Du HG. J. Org. Chem. 2015; 80: 9446 10c Yin X.-S. Li Y.-C. Yuan J. Gu W.-J. Shi B.-F. Org. Chem. Front. 2015; 2: 119 10d Takemura N. Kuninobu Y. Kanai M. Org. Lett. 2013; 15: 844 11a Suess AM. Ertem MZ. Cramer CJ. Stahl SS. J. Am. Chem. Soc. 2013; 135: 9797 11b Wang Z.-L. Zhao L. Wang M.-X. Org. Lett. 2012; 14: 1472 11c Wang Z.-L. Zhao L. Wang M.-X. Org. Lett. 2011; 13: 6560 11d King AE. Huffman LM. Casitas A. Costas M. Ribas X. Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068 11e Hufman LM. Stahl SS. J. Am. Chem. Soc. 2008; 130: 9196 12 General Procedure for Cu(II)-Catalyzed Alkoxylation: Cu2(OH)2CO3 (0.04 mmol), KOCN (0.40 mmol), methenamine (0.04 mmol), 4-bromo-N-(2-(dimethylamino)ethyl)benzamide (0.20 mmol), CH3OH (2 mL) were introduced into a 15 mL sealed tube equipped with a magnetic stirrer in O2. The mixture was vigorously stirred at 120 °C for 24 h. After cooling to room temperature, the solvent was evaporated under vacuum. The residue was dissolved in mixed solvent of dichloromethane (30 mL) and edetate tetrasodium (EDTA) saturated aqueous solution (30 mL). After separation, the aqueous phase was extracted twice with dichloromethane (15 mL) and the organic layers were combined and evaporated under vacuum. The crude product was purified by column chromatography using silica gel to afford 4-bromo-N-(2-(dimethylamino)ethyl)-2-methoxybenzamide. Isolated yield: 0.0542 g (90%). 1H NMR (500 MHz, CDCl3): δ = 8.33 (s, 1 H), 8.01 (d, J = 8.4 Hz, 1 H), 6.97 (dd, J = 8.4, 1.8 Hz, 1 H), 6.89 (d, J = 1.8 Hz, 1 H), 3.92 (s, 3 H), 3.66 (q, J = 5.9 Hz, 2 H), 2.87–2.80 (m, 2 H), 2.50 (s, 6 H). 13C NMR (126 MHz, CHCl3): δ = 164.84, 158.08, 138.54, 133.11, 121.34, 119.82, 112.04, 57.77, 56.29, 44.68, 36.56. HRMS (ESI): m/z [M]+ calcd for C12H18ClN2O2: 257.1051; found: 257.1062. Supplementary Material Supplementary Material Supporting Information