Synthesis, Table of Contents Synthesis 2018; 50(14): 2761-2767DOI: 10.1055/s-0037-1610137 paper © Georg Thieme Verlag Stuttgart · New York Synthesis of Imidazo[1,5-a]quinolines via Metal-Free Oxidative Amination of sp3 C–H Bonds Huanhuan Liu a School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China Email: chenma@sdu.edu.cn , Xinfeng Wang a School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China Email: chenma@sdu.edu.cn , Chen Ma* a School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. of China Email: chenma@sdu.edu.cn b State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, P. R. of China › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract A novel oxidative amination of sp3 C–H bonds was developed for the efficient synthesis of imidazo[1,5-a]quinolines from readily available α-amino acids and (2-azaaryl)methanes. This domino protocol, which was established in a TBAI-TBHP oxidation system, includes transition-metal-free decarboxylation and intramolecular cyclization. This method represented a new avenue for the synthesis of N-heterocycles using 2-methylquinolines as the synthon of quinoline-2-carbaldehydes. Key words Key wordsquinolone - amino acid - metal-free - oxidative amination - C–H functionalization Full Text References References 1a Malamas MS. Ni Y.-K. Erdei J. Stange H. Schindler R. Lankau H.-J. Grunwald C. Fan KY. Parris K. Langen B. Egerland U. Hage T. Marquis KL. Grauer S. Brennan J. Navarra R. Graf R. Harrison BL. Robichaud A. Kronbach T. Pangalos MN. Hoefgen N. Brandon NJ. J. Med. Chem. 2011; 54: 7621 1b Hranjec M. Kralj M. Piantanida I. Sedic M. Suman L. Pavelic K. Karminski-Zamola G. J. Med. Chem. 2007; 50: 5696 2 Cappelli A. Anzini M. Castriconi F. Grisci G. Paolino M. Braile C. Valenti S. Giuliani G. Vomero S. Di Capua A. Betti L. Giannaccini G. Lucacchini A. Ghelardini C. Di Cesare Mannelli L. Frosini M. Ricci L. Giorgi G. Mascia MP. Biggio G. J. Med. Chem. 2016; 59: 3353 3 Cappelli A. Giuliani G. Anzini M. Riitano D. Giorgi G. Vomero S. Bioorg. Med. Chem. 2008; 16: 6850 4 Wang X. Chen Z. Duan W. Song C. Ma Y. Tetrahedron: Asymmetry 2017; 28: 783 5a Bower JD. Ramage GR. J. Chem. Soc. 1955; 2834 5b Pelletier G. Charette AB. Org. Lett. 2013; 15: 2290 5c Shibahara F. Kitagawa A. Yamaguchi E. Murai T. Org. Lett. 2006; 8: 5621 5d Langry KC. J. Org. Chem. 1991; 56: 2400 6 Wang Q. Zhang S. Guo F. Zhang B. Hu P. Wang Z. J. Org. Chem. 2012; 77: 11161 7 Li M. Xie Y. Ye Y. Zou Y. Jiang H. Zeng W. Org. Lett. 2014; 16: 6232 8a Wang H. Xu W. Wang Z. Yu L. Xu K. J. Org. Chem. 2015; 80: 2431 8b Wang H. Xu W. Xin L. Liu W. Wang Z. Xu K. J. Org. Chem. 2016; 81: 3681 9 Yan Y. Zhang Y. Zha Z. Wang Z. Org. Lett. 2013; 15: 2274 10 Gong L. Xing L.-J. Xu T. Zhu X.-P. Zhou W. Kang N. Wang B. Org. Biomol. Chem. 2014; 12: 6557 11 Li Z. Wu S.-S. Luo Z.-G. Liu W.-K. Feng C.-T. Ma S.-T. J. Org. Chem. 2016; 81: 4386 12 Tan Z. Zhao H. Zhou C. Jiang H. Zhang M. J. Org. Chem. 2016; 81: 9939 13a Wang F.-F. Luo C.-P. Deng G. Yang L. Green Chem. 2014; 16: 2428 13b Li Q. Huang Y. Chen T. Zhou Y. Xu Q. Yin S.-F. Han L.-B. Org. Lett. 2014; 16: 3672 13c Xiao F. Chen S. Chen Y. Huang H. Deng G.-J. Chem. Commun. 2015; 51: 652 13d Wang G.-W. Li S.-X. Wu Q.-X. Yang S.-D. Org. Chem. Front. 2015; 2: 569 13e Liu H. Zhai T. Ding S. Hou Y. Zhang X. Feng L. Ma C. Org. Chem. Front. 2016; 3: 1096 14 Liu H. Duan T. Zhang Z. Xie C. Ma C. Org. Lett. 2015; 17: 2932 15 Justyna K. Chrostowska A. Lesniak S. Darrigan C. Baylere P. Khayar S. Wentrup C. J. Anal. Appl. Pyrolysis 2017; 125: 335 Supplementary Material Supplementary Material Supporting Information