Synthesis 2018; 50(17): 3499-3505
DOI: 10.1055/s-0037-1610168
paper
© Georg Thieme Verlag Stuttgart · New York

Phosphine-Free [3+2] Cycloaddition of Propargylamines with Dialkyl Azodicarboxylates: An Efficient Access to Pyrazole Backbone

Yicheng Zhang
a   School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn
b   Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China   Email: jieliu_1024@163.com
,
Jie Liu*
b   Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China   Email: jieliu_1024@163.com
,
Xueshun Jia*
a   School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. of China   Email: xsjia@mail.shu.edu.cn
c   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China
› Author Affiliations
We gratefully acknowledge the National Natural Science Foundation of China (No. 21472121) for financial support.
Further Information

Publication History

Received: 13 March 2018

Accepted after revision: 28 April 2018

Publication Date:
18 June 2018 (online)


Abstract

A phosphine-free [3+2] cycloaddition reaction of the substituted propargylamines with dialkyl azodicarboxylates at room temperature is described. This reaction provides a new approach to functionalized pyrazoles in good yields and high selectivity.

Supporting Information

 
  • References

    • 1a Marella A. Rahmat AM. Tauquir AM. Saha R. Tanwar O. Akhter M. Shaquiquzzaman M. Mumtaz AM. Mini-Rev. Med. Chem. 2013; 13: 921
    • 1b Bensen WG. Pain 2003; 515
    • 1c Wasylyk C. Zheng H. Castell C. Debussche L. Multon M.-C. Wasylyk B. Cancer Res. 2008; 68: 1275
    • 2a Runti C. Baiocchi L. Int. J. Tissue React. 1985; 7: 175
    • 2b Lemke TL. Abebe E. Moore PF. Carty TJ. J. Pharm. Sci. 1989; 78: 343
    • 2c Bistochi GA. De Meo G. Pedini M. Ricci A. Brouilhet H. Bucherie S. Rabaud M. Jacquignon P. Farmaco Ed. Sci. 1981; 36: 315
    • 2d Claramunt RM. Bouissane L. Cabildo MP. Cornago MP. Elguero J. Radziwon A. Medina C. Bioorg. Med. Chem. 2009; 17: 1290
  • 3 Sun J.-H. Teleha CA. Yan J.-S. Rodgers JD. Nugiel DA. J. Org. Chem. 1997; 62: 5627
  • 4 Allen SH. Johns BA. Gudmundsson KS. Freeman GA. Boyd FL. Jr. Sexton CH. Selleseth DW. Creech KL. Moniri KR. Bioorg. Med. Chem. 2006; 14: 944
    • 5a Rostom SA. F. Bioorg. Med. Chem. 2006; 14: 6475
    • 5b Mor S. Nagoria S. Kumar A. Monga J. Lohan S. Med. Chem. Res. 2016; 25: 1096
  • 6 Helal CJ. Arnold EP. Boyden TL. Chang C. Chappie TA. Fennell KF. Forman MD. Hajos M. Harms JF. Hoffman WE. Humphrey JM. Kang Z. Kleiman RJ. Kormos BL. Lee C.-W. Lu J. Maklad N. McDowell L. Mente S. O’Connor RE. Pandit J. Piotrowski M. Schmidt AW. Schmidt CJ. Ueno H. Verhoest PR. Yang EX. J. Med. Chem. 2017; 60: 5673
    • 7a Knorr L. Ber. Dtsch. Chem. Ges. 1883; 16: 2597
    • 7b Texier-Boullet F. Klein B. Hamelin J. Synthesis 1986; 409
    • 7c Wang Z.-X. Qin H.-L. Green Chem. 2004; 6: 90
    • 7d Dastrup DM. Yap AH. Weinreb SM. Henryb JR. Lechleiter AJ. Tetrahedron 2004; 60: 901
    • 7e Heller ST. Natarajan SR. Org. Lett. 2006; 8: 2675
    • 8a Yoshimatsu M. Ohta K. Takahashi N. Chem. Eur. J. 2012; 18: 15602
    • 8b Raji Reddy C. Vijaykumar J. Grée R. Synthesis 2013; 45: 830
    • 8c Chen J. Properzi R. Uccello DP. Young JA. Dushin RG. Starr JT. Org. Lett. 2014; 16: 4146
    • 8d Xu S.-X. Hao L. Wang T. Ding Z.-C. Zhan Z.-P. Org. Biomol. Chem. 2013; 11: 294
    • 8e Kiyokawa K. Ito Y. Kakehi R. Ogawa T. Goto Y. Yoshimatsu M. Eur. J. Org. Chem. 2016; 4998
    • 9a Berlin JM. Fu GC. Angew. Chem. Int. Ed. 2008; 47: 7048
    • 9b Nair V. Biju AT. Mathew SC. Babu BP. Chem. Asian J. 2008; 3: 810
    • 9c Xu X. Du P. Cheng D. Wang H. Li X. Chem. Commun. 2012; 48: 1811
    • 9d Zhu H. Sun S. Qiao H. Yang F. Kang J. Wu Y. Wu Y. Org. Lett. 2018; 20: 620
    • 9e Bain RM. Sathyamoorthi S. Zare RN. Angew. Chem. Int. Ed. 2017; 56: 15083
    • 10a Evans DA. Nelson SG. J. Am. Chem. Soc. 1997; 119: 6452
    • 10b Evans DA. Johnson DS. Org. Lett. 1999; 1: 595
  • 11 Evans DA. Gauchet-Prunet JA. Carreira EM. Charatte AB. J. Org. Chem. 1991; 56: 741
  • 12 Marullo NP. Alford JA. J. Org. Chem. 1968; 33: 2368
  • 13 Shi M. Zhao G.-L. Tetrahedron 2004; 60: 2083
    • 14a John J. Sajisha VS. Mohanlal S. Radhakrishnan KV. Chem. Commun. 2006; 3510
    • 14b Hoffmann HM. R. Angew. Chem., Int. Ed. Engl. 1969; 8: 556
    • 14c Brimble MA. Heathcock CH. J. Org. Chem. 1993; 58: 5261
    • 15a Yamazaki S. Maenaka Y. Fujinami K. Mikata Y. RSC Adv. 2012; 2: 8095
    • 15b Brunn E. Huisgen R. Angew. Chem., Int. Ed. Engl. 1969; 8: 513
    • 15c Li Y. Zhang H. Wei R. Miao Z. Adv. Synth. Catal. 2017; 359: 4158
  • 16 Nair V. Mathew SC. Biju AT. Suresh E. Angew. Chem. Int. Ed. 2007; 46: 2070
    • 17a Xu X. Li X. Ma L. Ye N. Weng B. J. Am. Chem. Soc. 2008; 130: 14048
    • 17b Huisgen R. In The Adventure Playground of Mechanisms and Novel Reaction: Profiles, Pathways and Dreams. Seeman JI. ACS; Washington DC: 1994: 62
    • 17c Okitsu T. Sato K. Wada A. Org. Lett. 2010; 12: 3506
    • 17d Xu XL. Li XN. Org. Lett. 2009; 11: 1027
  • 18 CCDC 1828003 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Chen M. Peng J. Mao T. Huang J. Org Lett. 2014; 16: 6286
  • 20 Liang L. Liu J. Xu X. Li Y. Youji Huaxue 2009; 29: 1672