Subscribe to RSS
DOI: 10.1055/s-0037-1610331
Scalable Synthesis of Naphthothiophene-based D-π-D Extended Oligomers through Cascade Direct Arylation Processes
We gratefully acknowledge the University of Pavia and Salahaddin University for support.Publication History
Received: 03 October 2018
Accepted after revision: 06 November 2018
Publication Date:
12 November 2018 (online)
Published as part of the Cluster Synthesis of Materials§These authors contributed equally.
Abstract
The synthesis of two novel π-extended oligomers, incorporating naphtho[1,2-b]thiophene-4-carboxylate 2-octyldodecyl esters as end-capping moieties, and two different conjugated core fragments, has been achieved through a cascade sequence of sustainable organic reactions. Benzo[c][1,2,5]thiadiazole and 2-octyldodecyl benzo[1,2-b:6,5-b′]dithiophene-4-carboxylate have been used, respectively, as electron-poor and electro-rich π-conjugated cores. In the latter case, a sequence of nine aromatic rings in a fully conjugated structure is achieved with a high yielding, sustainable cascade approach. The optoelectronic properties of both oligomers are reported.
Key words
cascade organic reactions - π-conjugated oligomers - direct arylation - organic electronics - fused aromatic ringsSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610331.
- Supporting Information
-
References and Notes
- 1 Chatzisideris MD, Laurent A, Christoforidis GC, Krebs FC. Appl. Energy 2017; 208: 471
- 2 Li H, Xiao H, Ding L, Wang J. Sci. Bull. 2018; 63: 340
- 3 Meng Ll, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H.-L, Cao Y, Chen Y. Science 2018; 361: 1094
- 4 Chen J, Liao Q, Wang G, Yan Z, Wang H, Wang Y, Zhang X, Tang Y, Facchetti A, Marks TJ, Guo X. Macromolecules 2018; 51: 3874
- 5 Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJ. M, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat. Mater. 2017; 16: 363
- 6 Punzi A, Operamolla A, Omar OH, Brunetti F, Scaccabarozzi AD, Farinola GM, Stingelin N. Chem. Mater. 2018; 30: 2213
- 7 Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J. Am. Chem. Soc. 2017; 139: 4929
- 8 Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman AS. R, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv. Mater. 2018;
- 9 Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J. J. Am. Chem. Soc. 2018; 140: 7159
- 10 Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J. Am. Chem. Soc. 2015; 137: 14149
- 11 Po R, Bianchi G, Carbonera C, Pellegrino A. Macromolecules 2015; 48: 453
- 12 Po R, Roncali J. J. Mater. Chem. C 2016; 4: 3677
- 13 Cao C, Xiao M, Yang X, Zhang J, Huang F, Cao Y. J. Mater. Chem. C 2018; 6: 8020
- 14 Huang Y, Zheng N, Wang Z, Ying L, Huang F, Cao Y. Chem. Commun. 2017; 1997
- 15 Nitti A, Bianchi G, Po R, Pasini D. Molecules 2017; 22: 821
- 16 Nitti A, Bianchi G, Po R, Swager TM, Pasini D. J. Am. Chem. Soc. 2017; 139: 8788
- 17 Nitti A, Bianchi G, Po R, Pasini D. Synthesis 2018, accepted.
- 18 Tsao HN, Cho DM, Park I, Hansen MR, Mavrinsky A, Yoon DY, Graf R, Pisula W, Spiess HW, Müllen K. J. Am. Chem. Soc. 2011; 133: 2605
- 19 Zhu W, Wu Y, Wang S, Li W, Li X, Chen J, Wang Z.-S, Tian H. Adv. Funct. Mater. 2011; 21: 756
- 20 Chen L, Zhang B, Cheng Y, Xie Z, Wang L, Jing X, Wang F. Adv. Funct. Mater. 2010; 20: 3143
- 21 Experimental Procedures and Characterization Data Synthesis of 4a (Table 1 Entry 5): 4,7-Dibromobenzo[c][1,2,5]thiadiazole (150 mg, 0.51 mmol) was added to a solution of 2-octyldodecyl naphtho[1,2-b]thiophene-4-carboxylate (519 g, 1.02 mmol), Pd(OAc)2 (11 mg, 0.05 mmol), Ph3P (26 mg, 0.1 mmol), and K2CO3 (138 mg, 1 mmol) in anhydrous DMAc (3 mL) and then magnetically stirred at 110 °C for 24 h. The reaction solvent was removed under reduced pressure, and the product was purified by flash chromatography (SiO2; petroleum ether/CH2Cl2, 8:2), to obtain 4a as a red solid (408 mg, 71%). Rf = 0.49 (petroleum ether/CH2Cl2, 7:3). 1H NMR (400 MHz, CDCl3): δ = 9.28 (s, 2 H), 8.44 (s, 2 H), 8.14 (d, J = 8.2 Hz, 4 H), 7.98 (s, 2 H), 7.91 (d, J = 8.0 Hz, 4 H), 7.63 (t, J = 8.1 Hz, 2 H), 7.50 (t, J = 8.0 Hz, 2 H), 4.42 (d, J = 5.7 Hz, 4 H), 1.96 (dt, J = 12.2, 6.0 Hz, 2 H), 1.58–1.17 (m, 64 H), 0.87–0.82 (m, 12 H). 13C NMR (101 MHz, CDCl3): δ = 166.84, 152.66, 139.83, 138.90, 135.76, 130.83, 130.53, 130.32, 129.79, 129.03, 126.47, 126.44, 126.31, 123.77, 123.64, 68.30, 37.67, 32.01, 31.69, 30.17, 29.78, 29.45, 26.98, 22.76, 14.19. MALDI-TOF: m/z = 1148. Anal. calcd: C, 75.21; H, 8.42; found: C, 75.19; H, 8.38.Compound 4b : Obtained as a dark-red solid (68 mg, 12%). Rf = 0.24 (petroleum ether/CH2Cl2, 7:3). 1H NMR (200 MHz, CDCl3): δ = 9.33 (s, 1 H), 8.50 (d, J = 7.7 Hz, 1 H), 8.41 (s, 1 H), 8.13 (d, J = 7.6 Hz, 2 H), 7.90 (d, J = 7.8 Hz, 1 H), 7.68–7.57 (m, 1 H), 7.56–7.44 (m, 1 H), 4.46–4.36 (m, 42 H), 1.97 (d, J = 9.9 Hz, 1 H), 1.51–1.19 (m, 32 H), 0.85 (s, 6 H). MALDI-TOF: m/z = 720. Anal. calcd.: C, 64.89; H, 6.84; found: C, 64.82; H, 6.80.Compound 4c : Obtained as a pale-yellow oil (45 mg, 8%). Rf = 0.75 (petroleum ether/CH2Cl2, 7:3). 1H NMR (200 MHz, CDCl3): δ = 8.63 (s, 2 H), 8.57 (s, 2 H), 8.12 (d, J = 8.0 Hz, 2 H), 8.02 (d, J = 8.1 Hz, 2 H), 7.70 (t, J = 7.4 Hz, 2 H), 7.57 (t, J = 7.4 Hz, 2 H), 4.42 (d, J = 5.4 Hz, 4 H), 1.94 (s, 2 H), 1.58–1.18 (m, 64 H), 0.84 (dt, J = 7.0, 4.2 Hz, 12 H). MALDI-TOF: m/z = 1014. Anal. calcd.: C, 78.05; H, 9.33; found: C, 78.01; H, 9.30.Synthesis of Compound 6 : 2-Octyldodecyl benzo[1,2-b:6,5-b′]dithiophene-4-carboxylate (128 mg, 0.25 mmol) was added to a solution of 2-octyldodecyl naphtho[1,2-b]thiophene-4-carboxylate (259 mg, 0.55 mmol), Pd(OAc)2 (4 mg, 0.025 mmol), Ph3P (15 mg, 0.05 mmol), and K2CO3 (69 mg, 0.5 mmol) in anhydrous DMAc (2 mL) and then stirred at 110 °C for 24 h. The reaction solvent was removed under reduced pressure, and the product was purified by flash chromatography (SiO2; petroleum ether/CH2Cl2, 8:2) to obtain 6 as a dark-yellow solid (330 mg, 87%). Rf = 0.39 (broad) (petroleum ether/CH2Cl2, 3:1). 1H NMR (400 MHz, CDCl3): δ = 8.58–8.32 (m, 6 H), 8.05–7.85 (m, 4 H), 7.65–7.42 (m, 5 H), 4.50–4.32 (m, 6 H), 2.03–1.81 (m, 3 H), 1.67–1.01 (m, 96 H), 0.84 (s, 18 H). 13C NMR (101 MHz, CDCl3): δ = 166.67, 166.58, 166.53, 138.89, 138.75, 137.59, 137.14, 137.07, 136.98, 136.86, 136.67, 136.31, 133.89, 130.92, 130.83, 130.33, 129.78, 129.10, 126.45, 126.37, 124.52, 124.02, 123.92, 123.53, 123.37, 122.55, 122.19, 68.24, 37.74, 32.00, 31.73, 30.19, 29.78, 29.46, 27.05, 22.76, 14.18. MALDI-TOF: m/z = 1527. Anal. calcd.: C, 76.23; H, 9.10; found: C, 76.20; H, 9.06
- 22 Berrouard P, Najari A, Pron A, Gendron D, Morin PO, Pouliot JR, Veilleux J, Leclerc M. Angew. Chem. Int. Ed. 2012; 124: 2110
- 23 Grisorio R, De Marco L, Baldisserri C, Martina F, Serantoni M, Gigli G, Suranna GP. ACS Sustainable Chem. Eng. 2015; 3: 770
- 24 Roger J, Požgan F, Doucet H. Green Chem. 2009; 11: 425
- 25 Reetz MT, de Vries JG. Chem. Commun. 2004; 1559
- 26 Zhang J, Chen W, Rojas AJ, Jucov EV, Timofeeva TV, Parker TC, Barlow S, Marder SR. J. Am. Chem. Soc. 2013; 135: 16376
- 27 Chen C, Maldonado DH, Le Borgne D, Alary F, Lonetti B, Heinrich B, Donnioe B, Moineau-Chane Ching KI. New J. Chem. 2016; 40: 7326
- 28a Rieger R, Beckmann D, Pisula W, Steffen W, Kastler M, Müllen K. Adv. Mater. 2010; 22: 83
- 28b Harschneck T, Zhou N, Manley EF, Lou SJ, Yu X, Butler MR, Timalsina A, Turrisi R, Ratner MA, Chen LX, Chang RP. H, Facchetti A, Marks TJ. Chem. Commun. 2014; 4099
- 28c Welker M, Turbiez MG. R, Chebotareva N, Kirner HJ. Functionalized Benzodithiophene Polymers for Electronic Application. WO 2014086722, 2014
- 29 Kono T, Kumaki D, Nishida J.-I, Sakanoue T, Kakita M, Tada H, Tokito S, Yamashita Y. Chem. Mater. 2007; 19: 1218
- 30 Nitti A, Signorile M, Boiocchi M, Bianchi G, Po R, Pasini D. J. Org. Chem. 2016; 81: 11035