Synlett, Table of Contents Synlett 2018; 29(13): 1753-1758DOI: 10.1055/s-0037-1610454 letter © Georg Thieme Verlag Stuttgart · New York A Straightforward Access to Trifluoromethylated Spirobipyrazolines through a Double (3+2)-Cycloaddition of Fluorinated Nitrile Imines with Alkoxyallenes Greta Utecht , Grzegorz Mlostoń , Marcin Jasiński* Recommend Article Abstract Buy Article All articles of this category Dedicated to Professor Janusz Zakrzewski (University of Łódź) on the occasion of his 70th birthday Abstract Formal double (3+2)-cycloaddition of in situ generated trifluoroacetonitrile imines with alkoxyallenes proceeds in a highly regio- and diastereoselective manner to afford anti-configured spirobipyrazolines as the exclusive 2:1 adducts. Initial stepwise addition of the title electron-deficient 1,3-dipoles onto cumulenic reaction partner is postulated to explain the observed reaction pathway. Key words Key wordsnitrile imines - alkoxyallenes - (3+2)-cycloaddition - pyrazolines - spiro compounds Full Text References References and Notes For selected examples of bioactive CF3-pyrazoles, see: 1a Lahm GP. Selby TP. Freudenberger JH. Stevenson TM. Myers BJ. Seburyamo G. Smith BK. Flexner L. Clark CE. Cordova D. Bioorg. Med. Chem. Lett. 2005; 15: 4898 1b Lee E. Choi MK. Youk HJ. Kim CH. Han IC. Yoo BC. Lee MK. Lim SJ. J. Cancer Res. Clin. Oncol. 2006; 132: 232 1c Sun A. Chandrakumar N. Yoon J.-J. Plemper RK. Snyder JP. Bioorg. Med. Chem. Lett. 2007; 17: 5199 1d Varnes JG. Wacker DA. Pinto DJ. P. Orwat MJ. Theroff JP. Wells B. Galemo RA. Luegetten JM. Knabb RM. Bai S. He K. Lam PY. S. Wexler RR. Bioorg. Med. Chem. Lett. 2008; 18: 749 1e Cox SR. Lesman SP. Boucher JF. Krautmann MJ. Hummel BD. Savides M. Marsh S. Fielder A. Stegamann MR. J. Vet. Pharmacol. Ther. 2010; 33: 461 1f Nakatani M. Yamaji Y. Honda H. Uchida Y. J. Pestic. Sci. 2016; 41: 107 See also: 1g Lamberth C. Heterocycles 2007; 71: 1467 1h Bégué J.-P. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . John Wiley and Sons; Hoboken, NJ: 2008 1i Fustero S. Sánchez-Roselló M. Barrio P. Simón-Fuentes A. Chem. Rev. 2011; 111: 6984 1j Karrouchi K. Radi S. Ramli Y. Taoufik J. Mabkhot YN. Al-aizari FA. Ansar M. Molecules 2018; 23: 134 For synthetic methods towards trifluoromethylpyrazolines, see: 2a Aggarwal R. Bansal A. Rozas I. Kelly B. Kaushik P. Kaushik D. Eur. J. Med. Chem. 2013; 70: 350 2b Zhang F.-G. Wei Y. Yi Y.-P. Nie J. Ma J.-A. Org. Lett. 2014; 16: 3122 2c Slobodyanyuk EY. Artamonov OS. Shishkin OV. Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487 2d Lobo MM. Oliveira SM. Brusco I. Machado P. Timmers LF. S. M. de Souza ON. Martins MA. P. Bonacorso HG. dos SantosJ. M. Canova B. da Silva TV. F. Zanatta N. Eur. J. Med. Chem. 2015; 102: 143 2e Wang Z. Yang Y. Gao F. Wang Z. Luo Q. Fang L. Org. Lett. 2018; 20: 934 3a Cunico W. Cechinel CA. Bonacorso HG. Martins MA. P. Zanatta N. de Souza MV. N. Freitas IO. Soares RP. P. Krettli AU. Bioorg. Med. Chem. Lett. 2006; 16: 649 3b Zhang X. Li X. Allan GF. Sbriscia T. Linton O. Lundeen SG. Sui Z. J. Med. Chem. 2007; 50: 3857 3c Reddy MV. R. Billa VK. Pallela VR. Mallireddigari MR. Boominathan R. Gabriel JL. Reddy EP. Bioorg. Med. Chem. 2008; 16: 3907 4a Marella A. Ali MR. Alam MT. Saha R. Tanwar O. Akhter M. Shaquiquzzaman M. Alam MM. Mini-Rev. Med. Chem. 2013; 13: 921 4b Monteiro Â. Gonçalves LM. Santos MM. M. Eur. J. Med. Chem. 2014; 79: 266 4c Huang QP. Zhang SN. Zhang SH. Wang K. Xiao Y. Molecules 2017; 22: 1813 5a Foti F. Grassi G. Risitano F. Nicolò F. Rotondo A. Helv. Chim. Acta 2001; 84: 3313 5b Bruno G. Nicolò F. Rotondo A. Foti F. Risitano F. Grassi G. Acta Crystallogr., Sect. C: Cryst. Struct. Chem. 2004; 60: 879 5c Liu H. Jia H. Wang B. Xiao Y. Guo H. Org. Lett. 2017; 19: 4714 6 Dadiboyena S. Eur. J. Med. Chem. 2013; 63: 347 7 Battioni P. Vo-Quang L. Vo-Quang Y. Bull. Soc. Chim. Fr. 1978; II: 415 8a Kowalski MK. Mlostoń G. Obijalska E. Linden A. Heimgartner H. Tetrahedron 2016; 72: 5305 8b Mlostoń G. Kowalski MK. Obijalska E. Heimgartner H. J. Fluorine Chem. 2017; 199: 92 8c Mlostoń G. Urbaniak K. Utecht G. Lentz D. Jasiński M. J. Fluorine Chem. 2016; 192: 147 9a Utecht G. Sioma J. Jasiński M. Mlostoń G. J. Fluorine Chem. 2017; 201: 68 9b Grzelak P. Utecht G. Jasiński M. Mlostoń G. Synthesis 2017; 49: 2129 9c Utecht G. Fruziński A. Jasiński M. Org. Biomol. Chem. 2018; 16: 1252 10 Wojciechowska A. Jasiński M. Kaszyński P. Tetrahedron 2015; 71: 2349 11 Representative Procedure To a mixture of bromide 4a (616 mg, 2.2 mmol) and methoxyallene (2a, 70 mg, 1.0 mmol) in dry toluene (4.0 mL) was added dropwise Et3N (90 μL) within ca. 10 min, and the resulting mixture was stirred at room temperature for 72 h. After Et2O (5 mL) was added, and the precipitate trimethylamine hydrobromide was filtered off, the organics were washed with H2O (2 × 15 mL), dried over Na2SO4, and the solvents were removed in vacuo. Purification by flash column chromatography (SiO2, PE/CH2Cl2 = 4:1) provided analytically pure 3a (230 mg, 49%, first eluted) and a second fraction containing mixture of 5a and 6a (58 mg, second eluted). Data for 3a Pale yellow oil. 1H NMR (CDCl3, 600 MHz): δ = 2.23, 2.34 (2 s, 3 H each, 2 CH3), 3.26 (s, 3 H, OCH3), 3.39, 3.86 (2 dbr, J = 18.7 Hz, 1 H each, 4-H2), 5.60 (s, 1 H, 9-H), 6.83, 6.98 (2 dbr, J = 8.5 Hz, 2 H each), 7.12, 7.16 (2 dbr, J = 8.6 Hz, 2 H each) ppm. 13C NMR (CDCl3, 151 MHz): δ = 20.6, 20.7 (2 q, 2 CH3), 33.6 (t, C-4), 54.9 (q, OCH3), 81.2 (s, C-5), 95.1 (d, C-9), 115.0, 117.7 (2 d, 4 CH, Tol), 120.4 (q, 1 J C–F = 269.3 Hz, CF3), 120.6 (q, 1 J C–F = 271.2 Hz, CF3), 129.8, 130.0 (2 d, 4 CH, Tol), 132.9, 133.8 (2 s, 2 i-C, Tol), 136.1 (q, 2 J C–F = 36.5 Hz, C-6), 137.1 (q, 2 J C–F = 38.8 Hz, C-3), 138.6, 138.8 (2 s, 2 i-C, Tol) ppm. 19F NMR (CDCl3, 188 MHz): δ = –66.8, –62.3 (2 s, 2 CF3) ppm. IR (film): ν = 1518, 1277, 1193, 1130, 1065, 760 cm–1. ESI-MS: m/z = 471.2 (100) [M + H]+. Anal. Calcd for C22H20N4F6O: C, 56.17; H, 4.29; N, 11.91. Found: C, 56.33; H, 4.24; N, 11.77. For analytical data of 5a and 6a, see Supporting Information. 12 Estimated based on 1H NMR spectra of the crude reaction mixtures. 13 CCDC-1838593 contains the supplementary crystallographic data for 3b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/getstructures. 14a Msaddek M. Rammah M. Ciamala K. Vebrel J. Laude B. Synthesis 1997; 1495 14b Farag AM. Elkholy YM. Ali KA. J. Heterocycl. Chem. 2008; 45: 279 14c Wang G. Liu X. Huang T. Kuang Y. Lin L. Feng X. Org. Lett. 2013; 15: 76 15 Pinho e Melo TM. V. D. Curr. Org. Chem. 2009; 13: 1406 16 Zimmer R. Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888 17a Padwa A. Bullock WH. Kline DN. Perumattam J. J. Org. Chem. 1989; 54: 2862 17b Padwa A. Meske M. Ni Z. Tetrahedron Lett. 1993; 34: 5047 17c Dugovič B. Fišera L. Reissig H.-U. Eur. J. Org. Chem. 2008; 277 18a Schade W. Reissig H.-U. Synlett 1999; 632 18b Helms M. Schade W. Pulz R. Watanabe T. Al-Harrasi A. Fišera L. Hlobilová I. Zahn G. Reissig H.-U. Eur. J. Org. Chem. 2005; 1003 18c Jasiński M. Utecht G. Fruziński A. Reissig H.-U. Synthesis 2016; 48: 893 19 For similar double (3+2)-cycloaddition strategy recently applied in the synthesis of spirobiisoxazolines using allenoates and nitrile oxides, see: Shang X. Liu K. Zhang Z. Xu X. Li P. Li W. Org. Biomol. Chem. 2018; 16: 895 20a Mizuno A. Umemura K. Nakashima M. Gen. Pharmacol. 1998; 30: 575 20b Yoshida H. Yanai H. Namiki Y. Fukatsu-Sasaki K. Furutani N. Tada N. CNS Drug Rev. 2006; 12: 9 20c Sheng X. Hua K. Yang C. Wang X. Ji H. Xu J. Huang Z. Zhang Y. Bioorg. Med. Chem. Lett. 2015; 25: 3535 20d Lipunova GN. Nosova EV. Charushin VN. Chupakhin ON. J. Fluorine Chem. 2015; 175: 84 Supplementary Material Supplementary Material Supporting Information