Synlett 2018; 29(13): 1753-1758
DOI: 10.1055/s-0037-1610454
letter
© Georg Thieme Verlag Stuttgart · New York

A Straightforward Access to Trifluoromethylated Spirobipyrazolines through a Double (3+2)-Cycloaddition of Fluorinated Nitrile Imines with Alkoxyallenes

Greta Utecht
,
Grzegorz Mlostoń
,
Marcin Jasiński*
The authors thank the National Science Center (NCN, Poland) for ­financial support in the framework of Preludium grant #2016/21/N/ST5/01254.
Further Information

Publication History

Received: 24 April 2018

Accepted after revision: 29 May 2018

Publication Date:
02 July 2018 (online)


Dedicated to Professor Janusz Zakrzewski (University of Łódź) on the occasion of his 70th birthday

Abstract

Formal double (3+2)-cycloaddition of in situ generated tri­fluoroacetonitrile imines with alkoxyallenes proceeds in a highly regio- and diastereoselective manner to afford anti-configured spirobipyrazolines as the exclusive 2:1 adducts. Initial stepwise addition of the title electron-deficient 1,3-dipoles onto cumulenic reaction partner is pos­tulated to explain the observed reaction pathway.

Supporting Information

 
  • References and Notes


    • For synthetic methods towards trifluoromethylpyrazolines, see:
    • 2a Aggarwal R. Bansal A. Rozas I. Kelly B. Kaushik P. Kaushik D. Eur. J. Med. Chem. 2013; 70: 350
    • 2b Zhang F.-G. Wei Y. Yi Y.-P. Nie J. Ma J.-A. Org. Lett. 2014; 16: 3122
    • 2c Slobodyanyuk EY. Artamonov OS. Shishkin OV. Mykhailiuk PK. Eur. J. Org. Chem. 2014; 2487
    • 2d Lobo MM. Oliveira SM. Brusco I. Machado P. Timmers LF. S. M. de Souza ON. Martins MA. P. Bonacorso HG. dos SantosJ. M. Canova B. da Silva TV. F. Zanatta N. Eur. J. Med. Chem. 2015; 102: 143
    • 2e Wang Z. Yang Y. Gao F. Wang Z. Luo Q. Fang L. Org. Lett. 2018; 20: 934
  • 6 Dadiboyena S. Eur. J. Med. Chem. 2013; 63: 347
  • 7 Battioni P. Vo-Quang L. Vo-Quang Y. Bull. Soc. Chim. Fr. 1978; II: 415
  • 10 Wojciechowska A. Jasiński M. Kaszyński P. Tetrahedron 2015; 71: 2349
  • 11 Representative Procedure To a mixture of bromide 4a (616 mg, 2.2 mmol) and methoxyallene (2a, 70 mg, 1.0 mmol) in dry toluene (4.0 mL) was added dropwise Et3N (90 μL) within ca. 10 min, and the resulting mixture was stirred at room temperature for 72 h. After Et2O (5 mL) was added, and the precipitate trimethylamine hydrobromide was filtered off, the organics were washed with H2O (2 × 15 mL), dried over Na2SO4, and the solvents were removed in vacuo. Purification by flash column chromatography (SiO2, PE/CH2Cl2 = 4:1) provided analytically pure 3a (230 mg, 49%, first eluted) and a second fraction containing mixture of 5a and 6a (58 mg, second eluted). Data for 3a Pale yellow oil. 1H NMR (CDCl3, 600 MHz): δ = 2.23, 2.34 (2 s, 3 H each, 2 CH3), 3.26 (s, 3 H, OCH3), 3.39, 3.86 (2 dbr, J = 18.7 Hz, 1 H each, 4-H2), 5.60 (s, 1 H, 9-H), 6.83, 6.98 (2 dbr, J = 8.5 Hz, 2 H each), 7.12, 7.16 (2 dbr, J = 8.6 Hz, 2 H each) ppm. 13C NMR (CDCl3, 151 MHz): δ = 20.6, 20.7 (2 q, 2 CH3), 33.6 (t, C-4), 54.9 (q, OCH3), 81.2 (s, C-5), 95.1 (d, C-9), 115.0, 117.7 (2 d, 4 CH, Tol), 120.4 (q, 1 J C–F = 269.3 Hz, CF3), 120.6 (q, 1 J C–F = 271.2 Hz, CF3), 129.8, 130.0 (2 d, 4 CH, Tol), 132.9, 133.8 (2 s, 2 i-C, Tol), 136.1 (q, 2 J C–F = 36.5 Hz, C-6), 137.1 (q, 2 J C–F = 38.8 Hz, C-3), 138.6, 138.8 (2 s, 2 i-C, Tol) ppm. 19F NMR (CDCl3, 188 MHz): δ = –66.8, –62.3 (2 s, 2 CF3) ppm. IR (film): ν = 1518, 1277, 1193, 1130, 1065, 760 cm–1. ESI-MS: m/z = 471.2 (100) [M + H]+. Anal. Calcd for C22H20N4F6O: C, 56.17; H, 4.29; N, 11.91. Found: C, 56.33; H, 4.24; N, 11.77. For analytical data of 5a and 6a, see Supporting Information.
  • 12 Estimated based on 1H NMR spectra of the crude reaction mixtures.
  • 13 CCDC-1838593 contains the supplementary crystallographic data for 3b. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/getstructures.
  • 15 Pinho e Melo TM. V. D. Curr. Org. Chem. 2009; 13: 1406
  • 16 Zimmer R. Reissig H.-U. Chem. Soc. Rev. 2014; 43: 2888
    • 18a Schade W. Reissig H.-U. Synlett 1999; 632
    • 18b Helms M. Schade W. Pulz R. Watanabe T. Al-Harrasi A. Fišera L. Hlobilová I. Zahn G. Reissig H.-U. Eur. J. Org. Chem. 2005; 1003
    • 18c Jasiński M. Utecht G. Fruziński A. Reissig H.-U. Synthesis 2016; 48: 893
  • 19 For similar double (3+2)-cycloaddition strategy recently applied in the synthesis of spirobiisoxazolines using allenoates and nitrile oxides, see: Shang X. Liu K. Zhang Z. Xu X. Li P. Li W. Org. Biomol. Chem. 2018; 16: 895