Synlett, Table of Contents Synlett 2018; 29(18): 2381-2384DOI: 10.1055/s-0037-1610632 letter © Georg Thieme Verlag Stuttgart · New York Two Propanediurea-based Cucurbituril Analogues: Bis-ns-TD[8] and NH-ns-TD[4] Chunhua Dai , Yenan Shen , Qiaochun Wang * Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. of China Email: qcwang@ecust.edu.cn › Author Affiliations Recommend Article Abstract Buy Article All articles of this category Abstract Two new cucurbituril members, one containing two equivalent cavities and the other having an active secondary amine group, were synthesized by condensation of propanediurea (2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione) with formaldehyde. These two macrocycles exhibit excellent thermal stability, and their structures were confirmed by single-crystal X-ray diffraction, 1H NMR spectroscopy, and high-resolution mass spectrometry. Key words Key wordscucurbiturils - propanediurea - macrocycles - condensation - supramolecular chemistry Full Text References References and Notes 1a Geras’ko OA. Samsonenko DG. Fedin VP. Russ. Chem. Rev. 2002; 71: 741 1b Lee JW. Samal S. Selvapalam N. Kim H.-J. Kim K. Acc. Chem. Res. 2003; 36: 621 1c Lagona J. Mukhopadhyay P. Chakrabarti S. Isaacs L. Angew. Chem. Int. Ed. 2005; 44: 4844 1d Reany O. Li A. Yefet M. Gilson MK. Keinan E. J. Am. Chem. Soc. 2017; 139: 8138 2a Day AI. Blanch RJ. Arnold AP. Lorenzo S. Lewis GR. Dance I. Angew. Chem. Int. Ed. 2002; 41: 275 2b Khashab NM. Trabolsi A. Lau YA. Ambrogio MW. Friedman DC. Khatib HA. Zink JI. Stoddart JF. Eur. J. Org. Chem. 2009; 1669 2c Dong S. Zheng B. Wang F. Huang F. Acc. Chem. Res. 2014; 47: 1982 2d Liu Y. Yang H. Wang Z. Zhang X. Chem. Asian J. 2013; 8: 1626 2e Hu J. Liu S. Acc. Chem. Res. 2014; 47: 2084 2f Tang X. Huang Z. Chen H. Kang Y. Xu J.-F. Zhang X. Angew. Chem. Int. Ed. 2018; 57: 1 2g Gupta M. Parvathi K. Mula S. Maity DK. Ray AK. Photochem. Photobiol. Sci. 2017; 16: 499 3a Wu F. Wu L.-H. Xiao X. Zhang Y.-Q. Xue S.-F. Tao Z. Day AI. J. Org. Chem. 2012; 77: 606 3b Gilberg L. Khan SA. Enderesova M. Sindelar V. Org. Lett. 2014; 16: 2446 3c Zhang H. Wang Q. Ma X. Tian H. Org. Lett. 2009; 11: 3234 3d Wu S. Ma X. Wang Q. Tian H. Dalton Trans. 2011; 40: 12033 3e Qian Z. Huang X. Wang Q. Dyes Pigm. 2017; 145: 365 3f Zhang Q. Qu D.-H. Wang Q. Tian H. Angew. Chem. Int. Ed. 2015; 54: 15789 3g Zhang Q. Wang W.-Z. Yu J.-J. Qu D.-H. Tian H. Adv. Mater. (Weinheim, Ger.) 2017; 29: 1604948 4 Freeman WA. Mock WL. Shih NY. J. Am. Chem. Soc. 1981; 103: 7367 5a Kim J. Jung I.-S. Kim S.-Y. Lee E. Kang J.-K. Sakamoto S. Yamaguchi K. Kim K. J. Am. Chem. Soc. 2000; 122: 540 5b Liu S. Zavalij PY. Isaacs L. J. Am. Chem. Soc. 2005; 127: 16798 5c Cheng X.-J. Liang L.-L. Chen K. Ji N.-N. Xiao X. Zhang J.-X. Zhang Y.-Q. Xue S.-F. Zhu Q.-J. Ni X.-L. Tao Z. Angew. Chem. Int. Ed. 2013; 52: 7252 6a Flinn A. Hough GC. Stoddardt JF. Williams DJ. Angew. Chem. Int. Ed. 1992; 31: 1475 6b Zhao J. Kim H.-J. Oh J. Kim S.-Y. Lee JW. Sakamoto S. Yamaguchi K. Kim K. Angew. Chem. Int. Ed. 2001; 40: 4233 6c Jon SY. Selvapalam N. Oh DH. Kang J.-K. Kim S.-Y. Jeon YJ. Lee JW. Kim K. J. Am. Chem. Soc. 2003; 125: 10186 6d Sasmal S. Sinha MK. Keinan E. Org. Lett. 2004; 6: 1225 6e Zhao N. Lloyd GO. Scherman OA. Chem. Commun. 2012; 48: 3070 6f Lucas D. Minami T. Iannuzzi G. Cao L. Wittenberg JB. Anzenbacher P. Isaacs L. J. Am. Chem. Soc. 2011; 133: 17966 7a Lagona J. Fettinger JC. Isaacs L. Org. Lett. 2003; 5: 3745 7b Lin J. Zhang Y. Zhang J. Xue S. Zhu Q. Tao Z. J. Mol. Struct. 2008; 875: 442 7c Lu L.-B. Yu D.-H. Zhang Y.-Q. Zhu Q.-J. Xue S.-F. Tao Z. J. Mol. Struct. 2008; 885: 70 8a Miyahara Y. Goto K. Oka M. Inazu T. Angew. Chem. Int. Ed. 2004; 43: 5019 8b Svec J. Necas M. Sindelar V. Angew. Chem. Int. Ed. 2010; 49: 2378 8c Liu J. Jiang X. Huang X. Zou L. Wang Q. Colloid Polym. Sci. 2016; 294: 1243 8d Wu Y. Xu L. Shen Y. Wang Y. Zou L. Wang Q. Liu J. Tian H. Chem. Commun. 2017; 53: 4070 9 Huang W.-H. Liu S. Zavalij PY. Isaacs L. J. Am. Chem. Soc. 2006; 128: 14744 10 Huang W.-H. Zavalij PY. Isaacs L. Angew. Chem. Int. Ed. 2007; 46: 7425 11 Wittenberg JB. Costales MG. Zavalij PY. Isaacs L. Chem. Commun. 2011; 47: 9420 12 Shen Y. Zou L. Wang Q. New J. Chem. 2017; 41: 7857 13 Bis-ns-TD[8]·4NaCl TD (10 g, 64.1mmol), paraformaldehyde (5.00 g, 166.6 mmol), CaCl2 (1 g, 9.0 mmol) and 9 M HCl (20 mL) were mixed and the solution was heated at 100 °C for 3.5 h. The resulting mixture was cooled to r.t. and the resulting precipitate was collected by filtration and washed with H2O (150 mL). The residual solid precipitate was collected and crystallized from 25% aq NaCl then dried to give a white solid; yield: 1.9 g (13.5%); mp >350 °C. 1H NMR (400 MHz, D2O): δ = 6.54 (d, J = 14.8 Hz, 2 H), 6.36 (dd, J = 26.3, 14.7 Hz, 12 H), 5.47 (s, 4 H), 5.20 (s, 20 H), 4.06–4.18 (m, 14 H), 2.30 (s, 8 H), 2.23 (d, J = 12.7 Hz, 4 H), 2.13 (d, J = 13.1 Hz, 4 H). 13C NMR (100 MHz, D2O, 298 K): δ = 153.46, 153.01, 152.91, 151.96, 77.67, 69.65, 69.60, 69.51, 69.42, 69.39, 66.45, 61.29, 60.87, 27.92, 27.60. MALDI-TOF MS: m/z [M + Na]+ calcd for C58H68N32NaO18: 1523.5281; found: 1523.4833. Anal. Calcd for C58H68N32O18·4NaCl (1732.3734): C, 40.18; H, 3.956; N, 25.87. Found: C, 40.12; H, 3.951; N, 25.81. 14 CCDC 1811515 and 1811514 contain the supplementary crystallographic data for bis-ns-TD[8]·4NaCl and NH-ns-TD[4]·2CaCl2 , respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures. 15 NH-ns-TD[4]·2CaCl2 The reaction filtrate from the preparation of Bis-ns-TD[8]·4NaCl (ref. 14) was concentrated to a quarter of its volume, and a yellow solid was obtained after adding acetone (5 mL) and H2O (10 mL). The solid was crystallized from H2O affording a pure white solid yield: 1.6 g; mp >350 °C. 1H NMR (400 MHz, D2O): δ = 6.50 (d, J = 15.1 Hz, 1 H), 6.29 (d, J = 15.1 Hz, 1 H), 6.19 (d, J = 15.0 Hz, 4 H), 5.44–5.16 (m, 6 H), 4.85 (s, 2 H), 4.42 (s, 2 H), 4.32–4.10 (m, 6 H), 3.85 (d, J = 10.6 Hz, 2 H), 2.31 (d, J = 26.3 Hz, 8 H). 13C NMR (100 MHz, D2O, 298K): δ = 155.71, 154.70, 154.22, 153.22, 69.75, 69.35, 68.91, 62.80, 61.74, 61.22, 60.77, 59.28, 26.89, 25.95. MALDI-TOF MS: m/z [M + Na]+ calcd for C28H35N17NaO8: 760.2747; found: 760.2252; [M + K]+ calcd for C28H35KN17O8: 776.2486; found: 776.2520. Anal. Calcd for C28H35N17O8·2CaCl2 (957.0860): C, 35.11; H, 3.685; N, 24.87. Found: C, 34.97; H, 3.659; N, 24.82. 16 Vinciguerra B. Cao L. Cannon JR. Zavalij PY. Fenselau C. Isaacs L. J. Am. Chem. Soc. 2014; 134: 131 17a Jansen RJ. Dissertation. Radboud University Nijmegen; The Netherlands: 2002 17b Ustrnul L. Kulhanek P. Lizal T. Sindelar V. Org. Lett. 2015; 17: 1022 18 Day AI. Blanch RJ. Coe A. Arnold AP. J. Inclusion Phenom. Macrocyclic Chem. 2002; 43: 247 Supplementary Material Supplementary Material Supporting Information Primary Data Primary Data