Synlett 2018; 29(16): 2167-2170
DOI: 10.1055/s-0037-1610635
cluster
© Georg Thieme Verlag Stuttgart · New York

A Planar-Chiral Pillar[5]arene-Based Monophosphine Ligand with Induced Chirality at the Biaryl Axis

Yuuya Nagata*
a   Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Email: nagata@sbchem.kyoto-u.ac.jp   Email: suginome@sbchem.kyoto-u.ac.jp
,
Yasuo Shimada
b   Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi, Kanazawa 920–1192, Japan   Email: ogoshi@se.kanazawa-u.ac.jp
,
Tsuyoshi Nishikawa
a   Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Email: nagata@sbchem.kyoto-u.ac.jp   Email: suginome@sbchem.kyoto-u.ac.jp
,
Ryohei Takeda
a   Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Email: nagata@sbchem.kyoto-u.ac.jp   Email: suginome@sbchem.kyoto-u.ac.jp
,
Makoto Uno
a   Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Email: nagata@sbchem.kyoto-u.ac.jp   Email: suginome@sbchem.kyoto-u.ac.jp
,
Tomoki Ogoshi*
b   Graduate School of Natural Science and Technology Kanazawa University, Kakuma-machi, Kanazawa 920–1192, Japan   Email: ogoshi@se.kanazawa-u.ac.jp
c   WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920–1192, Japan
,
Michinori Suginome*
a   Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan   Email: nagata@sbchem.kyoto-u.ac.jp   Email: suginome@sbchem.kyoto-u.ac.jp
› Author Affiliations
This work was partially supported by the following grants-in-aid: Grant-in-Aid for Scientific Research on Innovative Areas: π-System Figuration (JP15H00990 and JP17H05148; TO), (JP15H00994, YN), Coordination Asymmetry (JP17H05368, YN), Soft Crystal (JP18H04510, TO), and Kiban B (JP16H04130, TO) from MEXT Japan, as well as JST PRESTO (JPMJPR1313, TO), JST CREST (JPMJCR14L1, SM), and a Kanazawa University Chozen Project. NanoLSI is supported by the World Premier International (WPI) Research Center Initiative, Japan.
Further Information

Publication History

Received: 12 July 2018

Accepted after revision: 13 August 2018

Publication Date:
24 August 2018 (online)


Published as part of the Cluster Atropisomerism – in Memoriam Kurt Mislow

Abstract

A planar-chiral pillar[5]arene with cyclohexylmethoxy side chains and a pendant diphenylphosphine was prepared and used as a chiral ligand in asymmetric reactions. Chirality transfer from the planar-chiral pillar[5]arene scaffold to the chiral biaryl moiety was demonstrated by circular dichroism (CD) spectroscopy, single-crystal X-ray diffraction analysis, and asymmetric catalysis.

Supporting Information

 
  • References and Notes

  • 1 Ogoshi T. Kanai S. Fujinami S. Yamagishi TA. Nakamoto Y. J. Am. Chem. Soc. 2008; 130: 5022
  • 3 Ogoshi T. Masaki K. Shiga R. Kitajima K. Yamagishi TA. Org. Lett. 2011; 13: 1264
  • 5 Hayashi T. Acc. Chem. Res. 2000; 33: 354
  • 8 Mislow K. Siegel J. J. Am. Chem. Soc. 1984; 106: 3319
  • 10 Ogoshi T. Furuta T. Yamagishi T. Chem. Commun. 2016; 10775
  • 11 Compound 7: Precursor 6 (110 mg, 65.0 μmol), diphenylphosphine oxide (30.3 mg, 0.150 mmol), Pd(OAc)2 (1.53 mg, 6.80 μmol), and 1,4-bis(diphenylphosphino)butane (2.90 mg, 6.80 μmol) were dissolved in a mixture of diisopropylethylamine (iPr2NEt, 142 μL, 0.810 mmol) and dimethyl sulfoxide (816 μL) under a nitrogen atmosphere. The reaction mixture was stirred at 120 °C for 16 h. After cooling to room temperature, aq. HCl (1.0 M) and CH2Cl2 were added to the mixture. The organic phase was separated from aqueous phase, washed with water, and dried over MgSO4. After filtration and evaporation of the solvent, the residue was subjected to silica gel column chromatography (n-hexane/ethyl acetate, 4:1) to give 7 (93.9 mg, 83% yield); m.p. 135.5–135.8 °C. Compound 8: To a solution of 7 (86.8 mg, 500 μmol) and trimethylamine (139 μL, 1.00 mmol) in toluene (1.25 mL) was added trichlorosilane (51 μL, 500 μmol) at 0 °C. The resulting solution was heated at 80 °C for 24 h. After cooling to room temperature, the solvent was removed by evaporation. To the residue were added aq. NaOH (1.0 M) and saturated aq. NaHCO3. The organic phase was separated, washed with water, and dried over MgSO4. After filtration and evaporation of the solvent, the residue was subjected to silica gel column chromatography (n-hexane/ethyl acetate, 20:1) to give 8 (67.3 mg, 76% yield). The melting point of 8 was not determined due to the oxidation of the phosphine group during the procedure.
  • 12 Hayashi T. Hirate S. Kitayama K. Tsuji H. Torii A. Uozumi Y. J. Org. Chem. 2001; 66: 1441