Synthesis 2019; 51(16): 3091-3100
DOI: 10.1055/s-0037-1610710
paper
© Georg Thieme Verlag Stuttgart · New York

A Highly Efficient Heterogeneous Copper-Catalyzed Oxidative Cyclization of Benzylamines and 1,3-Dicarbonyl Compounds To Give Trisubstituted Oxazoles

Li Wei
a   Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China   Email: mzcai@jxnu.edu.cn
,
Shengyong You*
b   Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330029, P. R. of China   Email: ysygood1981@163.com
,
Yuxin Tuo
a   Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China   Email: mzcai@jxnu.edu.cn
,
a   Key Laboratory of Functional Small Organic Molecules, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. of China   Email: mzcai@jxnu.edu.cn
› Author Affiliations
We thank the National Natural Science Foundation of China (No. 21462021), the Natural Science Foundation of Jiangxi Province (No. 20161BAB203086), and the Ministry of Education (Key Laboratory of Functional Small Organic Molecules, No. KLFS-KF-201704) for financial support.
Further Information

Publication History

Received: 24 February 2019

Accepted after revision: 02 April 2019

Publication Date:
02 May 2019 (online)


Abstract

The heterogeneous copper-catalyzed cascade oxidative cyclization between benzylamines and 1,3-dicarbonyl compounds was achieved by using the 3-(2-aminoethylamino)propyl-functionalized MCM-41-immobilized copper(II) complex [MCM-41-2N-Cu(OAc)2] as catalyst and t-BuOOH (TBHP) as oxidant, with iodine as additive, under mild conditions, yielding a wide variety of 2,4,5-trisubstituted oxazoles in mostly good to excellent yields. This heterogeneous copper catalyst can be facilely prepared via a simple two-step procedure from readily available and inexpensive reagents and exhibits a slightly higher activity than Cu(OAc)2. MCM-41-2N-Cu(OAc)2 is also easy to recover and can be recycled up to eight times with almost consistent activity. The reaction is the first example of heterogeneous copper-catalyzed intermolecular cyclization for the construction of polysubstituted oxazoles.

Supporting Information

 
  • References

    • 2a Forsyth CJ, Ahmed F, Cink RD, Lee CS. J. Am. Chem. Soc. 1998; 120: 5597
    • 2b Vedejs E, Barda DA. Org. Lett. 2000; 2: 1033
    • 2c Burgett AW. G, Li Q, Wei Q, Harran PG. Angew. Chem. Int. Ed. 2003; 42: 4961
    • 2d Jin Z. Nat. Prod. Rep. 2006; 23: 464
    • 2e Jin Z. Nat. Prod. Rep. 2009; 26: 382
    • 3a Yeh VS. C. Tetrahedron 2004; 60: 11995
    • 3b Riego E, Hernandez D, Albericio F, Alvarez M. Synthesis 2005; 1907
    • 3c Anderson BA, Becke LM, Booher RN, Flaugh ME, Harn NK, Kress TJ, Varie DL, Wepsiec JP. J. Org. Chem. 1997; 62: 8634
    • 3d Momose Y, Maekaawa T, Yamano T, Kawada M, Odaka H, Ikeda H, Sohda T. J. Med. Chem. 2002; 45: 1518
    • 3e Patel HA, Ko D, Yavuz CT. Chem. Mater. 2014; 26: 6729
    • 3f Jones RC, Chojnacka MW, Quail JW, Gardiner MG, Decken A, Yates BF, Gossage RA. Dalton Trans. 2011; 40: 1594
    • 4a Turchi IJ, Dewar MJ. S. Chem. Rev. 1975; 75: 389
    • 4b Revuelta J, Machetti F, Cicchi S. In Modern Heterocyclic Chemistry, Vol. 2. Alvarez-Builla J, Vaquero JJ, Barluenga J. Wiley-VCH; Weinheim: 2011
    • 4c Shi B, Blake AJ, Lewis W, Campbell IB, Judkins BD, Moody CJ. J. Org. Chem. 2010; 75: 152
    • 4d Xue W.-J, Li Q, Zhu Y.-P, Wang J.-G, Wu A.-X. Chem. Commun. 2012; 48: 3485
    • 4e Zheng Y, Li X, Ren C, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2012; 77: 10353
    • 4f Selvi T, Srinivasan K. Chem. Commun. 2014; 50: 10845
    • 4g Weng Y, Lv W, Wu J, Ge B, Cheng G. Org. Lett. 2018; 20: 1853

      For selected examples, see:
    • 5a Merkul E, Muller TJ. J. Chem. Commun. 2006; 4817
    • 5b Pan Y, Zheng F, Lin H, Zhan Z. J. Org. Chem. 2009; 74: 3148
    • 5c Cheung CW, Buchwald SL. J. Org. Chem. 2012; 77: 7526
    • 5d Wang Y.-F, Chen H, Zhu X, Chiba S. J. Am. Chem. Soc. 2012; 134: 11980
    • 5e Senadi GC, Hu W.-P, Hsiao J.-S, Vandavasi J.-K, Chen C.-Y, Wang J.-J. Org. Lett. 2012; 14: 4478
    • 5f Hu Y, Yi R, Wang C, Xin X, Wu F, Wan B. J. Org. Chem. 2014; 79: 3052
    • 5g Zhou R.-R, Cai Q, Li D.-K, Zhuang S.-Y, Wu Y.-D, Wu A.-X. J. Org. Chem. 2017; 82: 6454

      For selected examples, see:
    • 6a Meyers AI, Tavares FX. J. Org. Chem. 1996; 61: 8207
    • 6b Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165
    • 6c Williams DR, Lowder PD, Gu Y.-G, Brooks DA. Tetrahedron Lett. 1997; 38: 331
    • 6d Wang Y, Li Z, Huang Y, Tang C, Wu X, Xu J, Yao H. Tetrahedron 2011; 67: 7406
    • 6e Huang Y, Ni L, Gan F, He Y, Xu J, Wu X, Yao H. Tetrahedron 2011; 67: 2066
    • 6f Li X, Li C, Yin B, Liu P, Li J, Shi Z. Chem. Asian J. 2013; 8: 1408
    • 7a Alberico D, Scott MK, Lauten M. Chem. Rev. 2007; 107: 174
    • 7b Flegeau EF, Popkin ME, Greaney MF. Org. Lett. 2006; 8: 2495
    • 7c Lee K, Counceller CM, Stambuli JP. Org. Lett. 2009; 11: 1457
    • 7d Williams DR, Fu LF. Org. Lett. 2010; 12: 808
    • 7e Zhang ML, Zhang SH, Liu MC, Cheng J. Chem. Commun. 2011; 47: 11522
    • 7f Shen X.-B, Zhang Y, Chen W.-X, Xiao Z.-K, Hu T.-T, Shao L.-X. Org. Lett. 2014; 16: 1984
    • 8a Hashmi AS. K, Weyrauch JP, Frey W, Bats JW. Org. Lett. 2004; 6: 4391
    • 8b Weyrauch JP, Hashmi AS. K, Schuster A, Hengst T, Schetter S, Littmann A, Rodolph M, Hamzic M, Visus J, Rominger F, Frey W, Bats JW. Chem. Eur. J. 2010; 16: 956
    • 8c Hashmi AS. K, Blanco Jaimes MC, Schuster AM, Rominger F. J. Org. Chem. 2012; 77: 6394
    • 8d Peng H, Akhmedov NG, Liang Y.-F, Jiao N, Shi X. J. Am. Chem. Soc. 2015; 137: 8912
    • 8e Querard P, Girard SA, Uhlig N, Li C.-J. Chem. Sci. 2015; 6: 7332
    • 8f Davies PW, Cremonesi A, Dumitrescu L. Angew. Chem. Int. Ed. 2011; 50: 8931
    • 8g Luo Y, Ji K, Li Y, Zhang L. J. Am. Chem. Soc. 2012; 134: 17412
    • 8h Chen M, Sun N, Chen H, Liu Y. Chem. Commun. 2016; 52: 6324
    • 9a Arcadi A, Cacchi S, Cacia L, Fabrizi G, Marinelli F. Org. Lett. 2001; 3: 2501
    • 9b Zheng J, Zhang M, Huang L, Hu X, Wu W, Huang H, Jiang H. Chem. Commun. 2014; 50: 3609
    • 11a Milton MD, Inada Y, Nishibayashi Y, Uemura S. Chem. Commun. 2004; 2712
    • 11b Chatterjee T, Cho JY, Cho EJ. J. Org. Chem. 2016; 81: 6995
    • 12a Borduas N, Powell DA. J. Org. Chem. 2008; 73: 7822
    • 12b Boldron C, Gamez P, Tooke DM, Spek AL, Reedijk J. Angew. Chem. Int. Ed. 2005; 44: 3585
    • 12c Li Z.-P, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 12d Li Z.-P, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
    • 12e Basle O, Li C.-J. Green Chem. 2007; 9: 1047
    • 12f Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 13a Beletskaya IP, Chepakov AV. Coord. Chem. Rev. 2004; 248: 2337
    • 13b Ley SV, Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 13c Chemler SR, Fuller PH. Chem. Soc. Rev. 2007; 36: 1153
    • 13d Martin R, Rodriguez-Rivero M, Buchwald SL. Angew. Chem. Int. Ed. 2006; 45: 7079
    • 13e Jones CP, Anderson KW, Buchwald SL. J. Org. Chem. 2007; 72: 7968
    • 13f Rodriguez-Rivero M, Buchwald SL. Org. Lett. 2007; 9: 973
    • 14a Martin R, Cuenca A, Buchwald SL. Org. Lett. 2007; 9: 5521
    • 14b Wan C, Zhang J, Wang S, Fan J, Wang Z. Org. Lett. 2010; 12: 2338
    • 14c Cano I, Alvarez E, Nicasio MC, Perez PJ. J. Am. Chem. Soc. 2011; 133: 191
    • 14d Li X, Huang L, Chen H, Wu W, Huang H, Jiang H. Chem. Sci. 2012; 3: 3463
    • 14e Xu Z, Zhang C, Jiao N. Angew. Chem. Int. Ed. 2012; 56: 11367
    • 14f Qi C, Peng Y, Wang L, Ren Y, Jiang H. J. Org. Chem. 2018; 83: 11926
    • 14g Pan J, Li X, Qiu X, Luo X, Jiao N. Org. Lett. 2018; 20: 2762
    • 15a Girard C, Onen E, Aufort M, Beauviere S, Samson E, Herscovici J. Org. Lett. 2006; 8: 1689
    • 15b Chassaing S, Sido AS. S, Alix A, Kumarraja M, Pale P, Sommer J. Chem. Eur. J. 2008; 14: 6713
    • 15c Lipshutz BH, Taft BR. Angew. Chem. Int. Ed. 2006; 45: 8235
    • 15d Wang D, Etienne L, Echeverria M, Moya S, Astruc D. Chem. Eur. J. 2014; 20: 4047
    • 15e Yamada YM. A, Sarkar SM, Uozumi Y. J. Am. Chem. Soc. 2012; 134: 9285
    • 15f Kantam ML, Reddy CV, Srinivas P, Bhargava S. In Topics in Organometallic Chemistry, Vol. 46. Taillefer M, Ma D. Springer; Heidelberg: 2013: 119-171
    • 16a Wu Q, Wang L. Synthesis 2008; 2007
    • 16b Zhang L, Li P, Wang L. Lett. Org. Chem. 2006; 3: 282
    • 16c Xiao R, Yao R, Cai M. Eur. J. Org. Chem. 2012; 4178
    • 16d Zhao H, Huang B, Wu Y, Cai M. J. Organomet. Chem. 2015; 797: 21
    • 17a Chiang GC. H, Olsson T. Org. Lett. 2004; 6: 3079
    • 17b Benyahya S, Monnier F, Taillefer M, Chi Man MW, Bied C, Ouazzan F. Adv. Synth. Catal. 2008; 350: 2205
    • 17c Benyahya S, Monnier F, Chi Man MW, Bied C, Ouazzan F, Taillefer M. Green Chem. 2009; 11: 1121
    • 17d Phan NT. S, Nguyen TT, Nguyen VT, Nguyen KD. ChemCatChem 2013; 5: 2374
    • 17e Chouhan G, Wang D, Alper H. Chem. Commun. 2007; 4809
    • 17f Zhao H, He W, Yao R, Cai M. Adv. Synth. Catal. 2014; 356: 3092
    • 17g Zhao H, Jiang Y, Chen Q, Cai M. New J. Chem. 2015; 39: 2106
    • 17h Zhao H, He W, Wei L, Cai M. Catal. Sci. Technol. 2016; 6: 1488
    • 17i Pan S, Yan S, Osako T, Uozumi Y. ACS Sustain. Chem. Eng. 2017; 5: 10722
    • 18a Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Nature 1992; 359: 710
    • 18b Corma A. Top. Catal. 1997; 4: 249
    • 18c Martin-Aranda RM, Cejka J. Top. Catal. 2010; 53: 141
    • 19a Mehnert PC, Weaver DW, Ying JY. J. Am. Chem. Soc. 1998; 120: 12289
    • 19b Kantam ML, Bandyopadhyay T, Rahman A, Reddy NM, Choudary BM. J. Mol. Catal. A: Chem. 1998; 133: 293
    • 19c Mukhopadhyay K, Sarkar BR, Chaudhari RV. J. Am. Chem. Soc. 2002; 124: 9692
    • 19d Cai M, Zheng G, Ding G. Green Chem. 2009; 11: 1687
    • 19e Cai M, Peng J, Hao W, Ding G. Green Chem. 2011; 13: 190
    • 19f Hao W, Liu H, Yin L, Cai M. J. Org. Chem. 2016; 81: 4244
    • 19g Havasi F, Ghorbani-Choghamarani A, Nikpour F. New J. Chem. 2015; 39: 6504
  • 20 Shyu S.-G, Cheng S.-W, Tzou D.-L. Chem. Commun. 1999; 2337
    • 21a Nunes CD, Valente AA, Pillinger M, Fernandes AC, Romao CC, Rocha J, Goncalves IS. J. Mater. Chem. 2002; 12: 1735
    • 21b Jia M, Seifert A, Thiel WR. Chem. Mater. 2003; 15: 2174
    • 22a Corma A, Gutierrez-Puebla E, Iglesias M, Monge A, Perez-Ferreras S, Sanchez F. Adv. Synth. Catal. 2006; 348: 1899
    • 22b Corma A, Gonzalez-Arellano C, Iglesias M, Navarro MT, Sanchez F. Chem. Commun. 2008; 6218
    • 22c del Pozo C, Corma A, Iglesias M, Sanchez F. Organometallics 2010; 29: 4491
    • 22d Villaverde G, Corma A, Iglesias M, Sanchez F. ACS Catal. 2012; 2: 399
    • 22e Yang W, Zhang R, Yi F, Cai M. J. Org. Chem. 2017; 82: 5204
  • 23 Lempers HE. B, Sheldon RA. J. Catal. 1998; 175: 62
  • 24 Kumler WD. J. Am. Chem. Soc. 1938; 60: 855
  • 25 Cai X.-H, Yang H.-J, Zhang G.-L. Synthesis 2005; 1569
  • 26 Sanz-Cervera JF, Blasco R, Piera J, Cynamon M, Ibanez I, Murguia M, Fustero S. J. Org. Chem. 2009; 74: 8988
  • 27 Verrier C, Fiol-Petit C, Hoarau C, Marsais F. Org. Biomol. Chem. 2011; 9: 6215
  • 28 Whitney SE, Rickborn B. J. Org. Chem. 1991; 56: 3058