Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(15): 2594-2601
DOI: 10.1055/s-0037-1610768
DOI: 10.1055/s-0037-1610768
feature
Organoiodine-Catalyzed Enantioselective Intramolecular Oxyaminations of Alkenes with N-(Fluorosulfonyl)carbamate
This work was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP18H04256 in Precisely Designed Catalysts with Customized Scaffolding and Grant-in-Aid for Scientific Research (B) JP19H02710), The Society of Iodine Science, Ube Industries Foundation, and Toyo Gosei Memorial Foundation.
![](https://www.thieme-connect.de/media/synthesis/202115/lookinside/thumbnails/ss-2021-f0066-fa_10-1055_s-0037-1610768-1.jpg)
Abstract
Organoiodine-catalyzed enantioselective intramolecular oxyaminations were realized by the use of benzyl N-(fluorosulfonyl)carbamate as the exogenous nitrogen source. The method allows access to enantioenriched lactones and oxazolines, starting from γ,δ- and δ,ε-unsaturated esters and N-allyl amides, respectively.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1610768.
- Supporting Information
Publication History
Received: 15 February 2021
Accepted after revision: 08 March 2021
Article published online:
15 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Romero RM, Wöste TH, Muñiz K. Chem. Asian J. 2014; 9: 972
- 2 Molnár IG, Thiehoff C, Holland MC, Gilmour R. ACS Catal. 2016; 6: 7167
- 3 Fujita M. Tetrahedron Lett. 2017; 58: 4409
- 4 Dohi T, Kita Y. Chem. Commun. 2009; 2073
- 5 Uyanik M, Ishihara K. J. Synth. Org. Chem., Jpn. 2012; 70: 1116
- 6 Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
- 7 Claraz A, Masson G. Org. Biomol. Chem. 2018; 16: 5386
- 8 Flores A, Cots E, Berges J, Muñiz K. Adv. Synth. Catal. 2019; 361: 2
- 9 Wang Y, Yang B, Wu ZG, Wu ZG. Synthesis 2021; 53: 889
- 10 Fujita M, Mori K, Shimogaki M, Sugimura T. Org. Lett. 2012; 14: 1294
- 11 Shimogaki M, Fujita M, Sugimura T. Eur. J. Org. Chem. 2013; 7128
- 12 Mizar P, Laverny A, El-Sherbini M, Farid U, Brown M, Malmedy F, Wirth T. Chem. Eur. J. 2014; 20: 9910
- 13 Suzuki S, Kamo T, Fukushi K, Hiramatsu T, Tokunaga E, Dohi T, Kita Y, Shibata N. Chem. Sci. 2014; 5: 2754
- 14 Alhalib A, Kamouka S, Moran WJ. Org. Lett. 2015; 17: 1453
- 15 Woerly EM, Banik SM, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 13858
- 16 Banik SM, Medley JW, Jacobsen EN. Science 2016; 353: 51
- 17 Mennie KM, Banik SM, Reichert EC, Jacobsen EN. J. Am. Chem. Soc. 2018; 140: 4797
- 18 Haj MK, Banik SM, Jacobsen EN. Org. Lett. 2019; 21: 4919
- 19 Sharma HA, Mennie KM, Kwan EE, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 16090
- 20 Levin MD, Ovian JM, Read JA, Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 2020; 142: 14831
- 21 Banik SM, Medley JW, Jacobsen EN. J. Am. Chem. Soc. 2016; 138: 5000
- 22 Wöste TH, Muñiz K. Synthesis 2016; 48: 816
- 23 Haubenreisser S, Woste TH, Martinez C, Ishihara K, Muñiz K. Angew. Chem. Int. Ed. 2016; 55: 413
- 24 Muñiz K, Barreiro L, Romero RM, Martínez C. J. Am. Chem. Soc. 2017; 139: 4354
- 25 Molnar IG, Gilmour R. J. Am. Chem. Soc. 2016; 138: 5004
- 26 Scheidt F, Schafer M, Sarie JC, Daniliuc CG, Molloy JJ, Gilmour R. Angew. Chem. Int. Ed. 2018; 57: 16431
- 27 Sarie JC, Neufeld J, Daniliuc CG, Gilmour R. ACS Catal. 2019; 9: 7232
- 28 Sarie JC, Thiehoff C, Neufeld J, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2020; 59: 15069
- 29 Meyer S, Häfliger J, Schäfer M, Molloy JJ, Daniliuc CG, Gilmour R. Angew. Chem. Int. Ed. 2021; 60: 6430
- 30 Gelis C, Dumoulin A, Bekkaye M, Neuville L, Masson G. Org. Lett. 2017; 19: 278
- 31 Wang Q, Lübcke M, Biosca M, Hedberg M, Eriksson L, Himo F, Szabó KJ. J. Am. Chem. Soc. 2020; 142: 20048
- 32 Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
- 33 Lovick HM, Michael FE. J. Am. Chem. Soc. 2010; 132: 1249
- 34 Cochran BM, Michael FE. Org. Lett. 2008; 10: 5039
- 35 Jeon H, Kim D, Lee JH, Song J, Lee WS, Kang DW, Kang S, Lee SB, Choi S, Hong KB. Adv. Synth. Catal. 2018; 360: 779
- 36 Yang S, Chen Y, Yuan Z, Bu F, Jiang C, Ding Z. Org. Biomol. Chem. 2020; 18: 9873
- 37 Romero RM, Souto JA, Muñiz K. J. Org. Chem. 2016; 81: 6118
- 38 Deng X.-J, Liu H.-X, Zhang L.-W, Zhang G.-Y, Yu Z.-X, He W. J. Org. Chem. 2021; 86: 235
- 39 Wata C, Hashimoto T. J. Am. Chem. Soc. 2021; 143: 1745
- 40 Fujita M, Yoshida Y, Miyata K, Wakisaka A, Sugimura T. Angew. Chem. Int. Ed. 2010; 49: 7068
- 41 Butt SE, Das M, Sotiropoulos J.-M, Moran WJ. J. Org. Chem. 2019; 84: 15605
- 42 Das M, Rodríguez A, Lo PK. T, Moran WJ. Adv. Synth. Catal. 2021; 363: 1646
- 43 Liu J, Liu Q.-Y, Fang X.-X, Liu G.-Q, Ling Y. Org. Biomol. Chem. 2018; 16: 7454
- 44 Nakajima T, Yamashita D, Suzuki K, Nakazaki A, Suzuki T, Kobayashi S. Org. Lett. 2011; 13: 2980
- 45 Moon NG, Harned AM. Tetrahedron Lett. 2013; 54: 2960
- 46 Haupt JD, Berger M, Waldvogel SR. Org. Lett. 2019; 21: 242
- 47 Gonda J, Martinková M, Zadrošová A, Šoteková M, Raschmanová J, Čonka P, Gajdošíková E, Kappe CO. Tetrahedron Lett. 2007; 48: 6912
- 48 Nishikawa T, Asai M, Ohyabu N, Isobe M. J. Org. Chem. 1998; 63: 188
- 49 Kc S, Basnet P, Thapa S, Shrestha B, Giri R. J. Org. Chem. 2018; 83: 2920