Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2018; 50(23): 4651-4658
DOI: 10.1055/s-0037-1610822
DOI: 10.1055/s-0037-1610822
paper
Gram-Scale Synthesis of β-Sulfonyl Styrenes
The authors would like to thank the Ministry of Science and Technology of the Republic of China for the financial support (MOST 106-2628-M-037-001-MY3).Further Information
Publication History
Received: 22 May 2018
Accepted after revision: 25 June 2018
Publication Date:
08 August 2018 (online)
Abstract
A simple and gram-scale synthesis of β-sulfonyl styrenes has been developed starting from one-pot PPA (polyphosphoric acid)-catalyzed 1,1-diacetoxylation of arylacetaldehydes (ArCH2CHO) with acetic anhydride (Ac2O) followed by deacetoxylative sulfonylation of the resulting 1,1-diacetate intermediate with sodium sulfinates (RSO2Na) in good yields under solvent-free conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-xxxxxxx.
- Supporting Information
-
References
- 1 For leading references, see: Fang Y. Luo Z. Xu X. RSC Adv. 2016; 6: 59661
- 2a Pandey G. Tiwari KN. Puranik VG. Org. Lett. 2008; 11: 3611
- 2b Zhu Q. Lu Y. Org. Lett. 2009; 11: 1721
- 2c Mauleon P. Carretero JC. Chem. Commun. 2005; 4961
- 2d Schneider TH. Rieger M. Ansorg K. Sobolev AN. Schirmeister T. Engels B. Grabowsky S. New J. Chem. 2015; 39: 5841
- 3a Wardrop DJ. Fritz J. Org. Lett. 2006; 8: 3659
- 3b Piccardi R. Renaud P. Eur. J. Org. Chem. 2007; 4752
- 3c McLaughlin NP. Evans P. J. Org. Chem. 2010; 75: 518
- 3d Zhao P. Beaudry CM. Angew. Chem. Int. Ed. 2014; 53: 10500
- 4a Bachovchin D. Zuhl A. Speers A. Wolfe M. Weerapana E. Brown S. Rosen H. Cravatt B. J. Med. Chem. 2011; 54: 5229
- 4b Santos MM. M. Moreira R. Mini-Rev. Med. Chem. 2007; 7: 1040
- 4c Palmer JT. Rasnick D. Klaus JL. Bromme D. J. Med. Chem. 1995; 38: 3193
- 4d Dunny E. Doherty W. Evans P. Malthouse JP. G. Nolan D. Knox AJ. S. J. Med. Chem. 2013; 56: 6638
- 5a Ortega-Munoz M. Morales-Sanfrutos J. Megia-Fernandez A. Lopez-Jaramillo FJ. Hernandez-Mateo F. Santoyo-Gonzalez F. J. Mater. Chem. 2010; 20: 7189
- 5b Wang H. Cheng F. Li M. Peng W. Qu J. Langmuir 2015; 31: 3413
- 5c Zhou J. Chen P. Deng C. Meng F. Cheng R. Zhong Z. Macromolecules 2013; 46: 6723
- 6 Xue Q. Mao Z. Shi Y. Mao H. Cheng Y. Zhu C. Tetrahedron Lett. 2012; 53: 1851
- 7 Sawangphon T. Katrun P. Chaisiwamongkhol K. Pohmakotr M. Reutrakul V. Jaipetch T. Soorukram D. Kuhakarn C. Synth. Commun. 2012; 43: 1692
- 8 Doherty W. Evans P. J. Org. Chem. 2016; 81: 1416
- 9 Qian H. Huang X. Synlett 2001; 1913
- 10a Jiang Y. Loh T.-P. Chem. Sci. 2014; 5: 4939
- 10b Yuan G. Zheng J. Gao X. Li X. Huang L. Chen H. Jiang H. Chem. Commun. 2012; 48: 7513
- 10c Chen J.-Y. Chen X.-L. Li X. Qu L.-B. Zhang Q. Duan L.-K. Xia Y.-Y. Chen X. Sun K. Liu Z.-D. Zhao Y.-F. Eur. J. Org. Chem. 2015; 314
- 10d Gao X. Pan X. Gao J. Huang H. Yuan G. Li Y. Chem. Commun. 2015; 51: 210
- 11a Guo R. Gui Q. Wang D. Tan Z. Catal. Lett. 2014; 144: 1377
- 11b Jiang Q. Xu B. Jia J. Zhao A. Shao Y.-R. Li Y.-Y. He N.-N. Guo C.-C. J. Org. Chem. 2014; 79: 7372
- 11c Xue N. Guo R. Tu X. Luo W. Deng W. Synlett 2016; 27: 2695
- 11d Katrun P. Hlekhlai S. Meesin J. Pohmakotr M. Reutrakul V. Jaipetch T. Soorukram D. Kuhakarn C. Org. Biomol. Chem. 2015; 13: 4785
- 11e Gao J. Lai J. Yuan G. RSC Adv. 2015; 5: 66723
- 11f Xu Y. Tang X. Hu W. Wu W. Jiang H. Green Chem. 2014; 16: 3720
- 11g Qian P. Bi M. Su J. Zha Z. Wang Z. J. Org. Chem. 2016; 81: 4876
- 12a Taniguchi N. Synlett 2012; 23: 1245
- 12b Taniguchi N. Tetrahedron 2014; 70: 1984
- 12c Shelke GM. Rao VK. Pericherla K. Kumar A. Synlett 2014; 25: 2345
- 12d Rong G. Mao J. Yan H. Zheng Y. Zhang G. J. Org. Chem. 2015; 80: 7652
- 12e Xu Y. Zhao J. Tang X. Wu W. Jiang H. Adv. Synth. Catal. 2014; 356: 2029
- 13a Taniguchi N. Synlett 2011; 1308
- 13b Das B. Lingaiah M. Damodar K. Bhunia N. Synthesis 2011; 2941
- 13c Nair V. Augustine A. Suja TD. Synthesis 2002; 2259
- 14a Chawla R. Kapoor R. Singh AK. Yadav LD. S. Green Chem. 2012; 14: 1308
- 14b Guan Z.-H. Zuo W. Zhao L.-B. Ren Z.-H. Liang Y.-M. Synthesis 2007; 1465
- 14c Liang S. Zhang R.-Y. Wang G. Chen S.-Y. Yu X.-Q. Eur. J. Org. Chem. 2013; 7050
- 14d Bian M. Xu F. Ma C. Synthesis 2007; 2951
- 14e Yang H. Li Y. Jiang M. Wang J. Fu H. Chem. Eur. J. 2011; 17: 5652
- 14f Huang F. Batey RA. Tetrahedron 2007; 63: 7667
- 14g Kar A. Sayyed IA. Lo WF. Kaiser HM. Beller M. Tse MK. Org. Lett. 2007; 9: 3405
- 14h Lin Y.-m. Lu G.-p. Wang R.-k. Yi W.-b. Org. Lett. 2017; 19: 1100
- 15a Deng G. Zou J. ARKIVOC 2010; (ii): 186
- 15b Deng GS. Sun TF. Chin. Chem. Lett. 2012; 23: 1115
- 15c Zeng X. Ilies L. Nakamura E. Org. Lett. 2012; 14: 954
- 16a Li X. Xu Y. Wu W. Jiang C. Qi C. Jiang H. Chem. Eur. J. 2014; 20: 7911
- 16b Singh R. Allam BK. Singh N. Kumari K. Singh SK. Singh KN. Org. Lett. 2015; 17: 2656
- 16c Cai S. Xu Y. Chen D. Li L. Chen Q. Huang M. Weng W. Org. Lett. 2016; 18: 2990
- 17a Kochhar KS. Bal BS. Deshpande RP. Rajadhyaksha SN. Pinnick HW. J. Org. Chem. 1983; 48: 1765
- 17b Reddy BM. Sreekanth PM. Khan A. Synth. Commun. 2004; 34: 1839
- 17c Kumar P. Hegda VR. Kumar TP. Tetrahedron Lett. 1995; 36: 601
- 17d Yadav JS. Reddy BV. S. Venugopal C. Ramalingam T. Synlett 2002; 604
- 17e Jin TS. Sun G. Li YW. Li TS. Green Chem. 2002; 4: 255
- 17f Ogiwara Y. Takahashi K. Kitazawa T. Sakai N. J. Org. Chem. 2015; 80: 3101 ; and references cited therein
- 17g Yadav JS. Subba Reddy BV. Kiran Kumar Reddy GS. Tetrahedron Lett. 2000; 41: 2695
- 18a Chang M.-Y. Lee T.-W. Wu M.-H. Org. Lett. 2012; 14: 2198
- 18b Chang M.-Y. Hsiao Y.-T. J. Org. Chem. 2017; 82: 11594
- 18c Chan C.-K. Tsai Y.-L. Chang M.-Y. Org. Lett. 2017; 19: 1358
- 19a Paradies J. Synthesis 2010; 947
- 19b Bieniek M. Koloda D. Grela K. Org. Lett. 2006; 8: 5689
- 19c Pal TK. Dey S. Pathak T. J. Org. Chem. 2011; 76: 3034 ; and references cited therein
- 20a Reddy MV. R. Mallireddigari MR. Cosenza SC. Pallela VR. Iqbal NM. Robell KA. Kang AD. Reddy EP. J. Med. Chem. 2008; 51: 86
- 20b Reddy MV. R. Venkatapuram P. Mallireddigari MR. Pallela VR. Cosenza SC. Robell KA. Akula B. Hoffman BS. Reddy EP. J. Med. Chem. 2011; 54: 6254
- 20c Vedula MS. Pulipaka AB. Venna C. Chintakuta VK. Jinnapally S. Kattuboina VA. Vallakati V. Akella V. Rajgopal S. Reka AK. Teepireddy SK. Mammoor PK. Rajagopalan R. Bulusu G. Khandelwal A. Upreti VV. Mamidi SR. Eur. J. Med. Chem. 2003; 38: 811
- 20d Adler V. Franklin CC. Kraft AS. Proc. Natl. Acad. Sci. U.S.A. 1992; 89: 5341
- 20e Lu M. Merali S. Gordon R. Jiang J. Li Y. Mandeli J. Duan X. Fallon J. Holland JF. Genes Cancer 2011; 2: 985
- 20f Gumireddy K. Reddy MV. R. Cosenza SC. Nathan RB. Baker SJ. Papathi N. Jiang J. Holland J. Reddy EP. Cancer Lett. 2005; 7: 275
- 20g Reddy EP. Reddy MV. R. US Patent 6359013 B1, 2002
- 21a Majumdar N. Paul ND. Mandal S. de Bruin B. Wulff WD. ACS Catal. 2015; 5: 2329
- 21b Shi Y.-L. Shi M. Org. Biomol. Chem. 2007; 5: 1499
- 21c Ferreira SB. da Silva F. deC. Pinto AC. Gonzaga DT. G. Ferreira VF. J. Heterocycl. Chem. 2009; 46: 1080
- 21d Ellis GP. Lockhart IM. The Chemistry of Heterocyclic Compounds: Chromenes, Chromanones, and Chromones . Vol. 31. Ellis GP. Wiley-VCH; Weinheim: 2009: 1-1196
- 22a Rokade BV. Prabhu KR. J. Org. Chem. 2014; 79: 8110
- 22b Chen J. Mao J. Zheng Y. Liu D. Rong G. Yan H. Zhang C. Shi D. Tetrahedron 2015; 71: 5059
- 22c Liu XT. Ding ZC. Ju LC. Xu SX. Zhan ZP. Synthesis 2017; 49: 1575
- 22d Terentev AO. Mulina OM. Pirgach DA. Ilovaisky AI. Syroeshkin MA. Kapustina NI. Nikishin GI. Tetrahedron 2017; 73: 6871
- 22e Kadari L. Palakodety RK. Yallapragada LP. Org. Lett. 2017; 19: 2580
- 22f Zhao Y. Lai YL. Du KS. Lin DZ. Huang JM. J. Org. Chem. 2017; 82: 9655
Sulfonylative coupling of DMSO and styrenes or acetylenes, for Cu(I), see:
For Cu(II), see:
For NH4I, see:
Decarboxylative coupling of cinnamic acids and RSO2Na, for Pd(II)/Ag(I), see:
For Cu(II), see:
For Mn(III), see:
For DIB, see:
For I2, see:
For K2CO3, see:
For electrolysis, see:
Nucleophilic substitution of arylacetylenes and RSO2Na, for Cu(I), see:
For Cu(II), see:
For H3PO4, see:
For Pd(II), see:
Nucleophilic substitution of styrenes and RSO2Na, for Cu(I), see:
For KI/NaIO4, see:
For NaI/CAN, see:
For expoxides, see:
For vicinal dibromides, see:
For vinyl bromides, see:
For vinyl boronic acids, see:
For vinyl sulfides, see:
Nucleophilic substitution of arylacetylenes and RSO2Cl, for In(III), see:
For Ag(I), see:
For Fe(II), see:
Cross-coupling of styrenes and RSO2NHNH2, for Cu(I), see:
For I2/TBHP, see:
For photolysis, see:
For divinylsulfones, see:
For biological activities of styryl sulfones, see:
For reviews on synthesis of chromenes, see: