Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2019; 51(16): 3085-3090
DOI: 10.1055/s-0037-1611521
DOI: 10.1055/s-0037-1611521
paper
Iron-Promoted Construction of Indoles via Intramolecular Oxidative C–N Coupling of 2-Alkenylanilines Using Persulfate
The authors acknowledge financial support of this work by the National Natural Science Foundation of China (21633013, 21101109, 21602228) and Natural Science Foundation of Jiangsu Province (BK20160394).Further Information
Publication History
Received: 15 February 2019
Accepted after revision: 01 April 2019
Publication Date:
30 April 2019 (online)
Abstract
Indole scaffold synthesis relies primarily on oxidative C–H amination of N-protected alkenylanilines for C–N intramolecular cyclization reactions. Herein, for the first time, without N-protection, various readily prepared 2-alkenylanilines were transformed into the desired indole products in good yields by using K2S2O8 as oxidant in the presence of catalytic amounts of FeF2. The K2S2O8/FeF2 system offers a direct and benign synthetic route to 3-arylindoles and it is applicable to a wide range of substituted indoles including drug intermediates.
Key words
indoles - C–N coupling - 2-alkenylanilines - oxidative amination - iron catalysis - 3-arylindoles - unprotected anilinesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611521.
- Supporting Information
-
References
- 1a Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215
- 1b Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 2a Rosenbaum C, Röhrs S, Müller O, Waldmann H. J. Med. Chem. 2005; 48: 1179
- 2b Morin D, Zini R, Urien S, Tillement JP. J. Pharmacol. Exp. Ther. 1989; 249: 288
- 2c Pedras MS. C, Hossain M. Bioorg. Med. Chem. 2007; 15: 5981
- 2d Richardson TI, Clarke CA, Yu KL, Yee YK, Bleisch TJ, Lopez JE, Jones SA, Hughes NE, Muehl BS, Lugar CW, Moore TL, Shetler PK, Zink RW, Osborne JJ, Montrose-Rafizadeh C, Patel N, Geiser AG, Galvin RJ. S, Dodge JA. ACS Med. Chem. Lett. 2011; 2: 148
- 2e Mésangeau C, Amata E, Alsharif W, Seminerio MJ, Robson MJ, Matsumoto RR, Poupaert JH, McCurdy CR. Eur. J. Med. Chem. 2011; 46: 5154
- 2f Youn SW, Ko TY, Jang YH. Angew. Chem. Int. 2017; 56: 6636
- 3a Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
- 3b Vicente R. Org. Biomol. Chem. 2011; 9: 6469
- 3c Youn SW, Ko TY. Asian J. Org. Chem. 2018; 7: 1467
- 3d Taylor RD, Maccoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
- 4a Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
- 4b Bischler A, Brion H. Ber. Dtsch. Chem. Ges. 1892; 25: 2860
- 4c Gassman PG, Grurtzmacher G, van Bergen TJ. J. Am. Chem. Soc. 1974; 96: 5512
- 5 Zhao CY, Li K, Pang Y, Li JQ, Liang C, Su GF, Mo DL. Adv. Synth. Catal. 2018; 360: 1919
- 6 Jang YH, Youn SW. Org. Lett. 2014; 16: 3720
- 7 Ma AL, Li YL, Li J, Deng J. RSC Adv. 2016; 6: 35764
- 8a Cacchi S, Fabrizi G, Goggiamani A. Adv. Synth. Catal. 2006; 348: 1301
- 8b Álvarez R, Martínez C, Madich Y, Denis JG, Aurrecoechea JM, de Lera ÁR. Chem. Eur. J. 2010; 16: 12746
- 8c Han XL, Lu XY. Org. Lett. 2010; 12: 3336
- 9a Cajaraville A, López S, Varela JA, Saá C. Org. Lett. 2013; 15: 4576
- 9b Cai S. j, Lin SY, Yi XL, Xi CJ. J. Org. Chem. 2017; 82: 512
- 9c Sharma U, Kancherla R, Naveen T, Agasti S, Maiti D. Angew. Chem. Int. Ed. 2014; 53: 11895
- 9d Liu Y, Yao B, Deng CL, Tang RY, Zhang XG, Li JH. Org. Lett. 2011; 13: 1126
- 10 Youn SW, Lee SR. Org. Biomol. Chem. 2015; 13: 4652
- 11 Yang R, Yu JT, Sun S, Zheng QH, Cheng J. Tetrahedron Lett. 2017; 58: 445
- 12a Mao XR, Wu YZ, Jiang XX, Liu XH, Cheng YX, Zhu C. RSC Adv. 2012; 2: 6733
- 12b Jadhav SD, Singh A. Org. Lett. 2017; 19: 5673
- 12c Gao P, Wang J, Bai ZJ, Fan MJ, Yang DS, Guan ZH. Org. Lett. 2018; 20: 3627
- 13a Laha JK, Tummalapalli KS. S, Gupta A. Org. Lett. 2014; 16: 4392
- 13b Mandal S, Bera T, Dubey G, Saha J, Laha JK. ACS Catal. 2018; 8: 5085
- 13c Bauer I, Knölker HJ. Chem. Rev. 2015; 115: 3170
- 13d Bernoud E, Ouli P, Guillot R, Mellah M, Hannedouche J. Angew. Chem. Int. Ed. 2014; 53: 4930
- 14a Jang SS, Youn SW. Org. Biomol. Chem. 2016; 14: 2200
- 14b Gao P, Wang J, Bai ZJ, Shen L, Yan YY, Yang DS, Fan MJ, Guan ZH. Org. Lett. 2016; 18: 6074
- 15 Elangovan S, Neumann J, Sortais JB, Junge K, Darcel C, Bellere M. Nat. Commun. 2016; 7: 12641
- 16 Choi I, Chung H, Park JW, Chung YK. Org. Lett. 2016; 18: 5508
- 17 Modha SG, Greaney MF. J. Am. Chem. Soc. 2015; 137: 1416
- 18 Chen SP, Liao YF, Zhao F, Qi HR, Liu SW, Deng GJ. Org. Lett. 2014; 16: 1618
- 19 Yamaguchi M, Suzuki K, Sato Y, Manabe K. Org. Lett. 2017; 19: 5388
- 20 Chen YX, Guo SB, Li KN, Qu JP, Yuan H, Hua QR, Chen BH. Adv. Synth. Catal. 2013; 355: 711
- 21 Zhang JZ, Yin ZW, Leonard P, Wu J, Sioson K, Liu C, Lapo R, Zheng SP. Angew. Chem. Int. Ed. 2013; 52: 1753
- 22 Bering L, Paulussen FM, Antonchick AP. Org. Lett. 2018; 20: 1978
- 23 Ackermann L, Kaspara LT, Gschrei CJ. Chem. Commun. 2004; 2824
- 24 Zhou Q, Zhang ZK, Zhou YJ, Li SC, Zhang Y, Wang JB. J. Org. Chem. 2017; 82: 48
- 25 Krüll J, Hubert A, Nebel N, Prante O, Heinrich MR. Chem. Eur. J. 2017; 23: 16174