Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(10): 1194-1198
DOI: 10.1055/s-0037-1611725
DOI: 10.1055/s-0037-1611725
cluster
A Flow Microreactor Approach to a Highly Efficient Diels–Alder Reaction with an Electrogenerated o-Quinone
This work was financially supported by the Grant-in-Aid for Scientific Research on Priority Areas (15H0584720).Further Information
Publication History
Received: 13 December 2018
Accepted after revision: 22 January 2019
Publication Date:
13 February 2019 (online)
Published as part of the Cluster Electrochemical Synthesis and Catalysis
Abstract
We have demonstrated a Diels–Alder reaction of an o-quinone generated in an electrochemical flow microreactor. In the flow microreactor system, 4-tert-butyl-o-benzoquinone was easily electrogenerated from 4-tert-butylpyrocatechol in the absence of chemical oxidants and then rapidly used, without decomposing, in a subsequent Diels–Adler reaction with various fulvenes to give the desired products efficiently.
Key words
quinones - Diels–Alder reaction - microreactor - electrochemical synthesis - flow chemistry - butylcatecholSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611725.
- Supporting Information
-
References and Notes
- 1a Diels O, Alder K. Justus Liebigs Ann. Chem. 1928; 460: 98 ; For reviews on Diels–Alder reactions, see for example:
- 1b Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 1c Takao K.-i, Munakata R, Tadano K.-i. Chem. Rev. 2005; 105: 4779
- 1d Nawrat CC, Moody CJ. Angew. Chem. Int. Ed. 2014; 53: 2056
- 2a Nair V, Menon RS, Bijub AT, Abhilashc KG. Chem. Soc. Rev. 2012; 41: 1050
- 2b Nair V, Kumar S. Synlett 1996; 1143
- 2c Nair V, Kumar S, Williard PG. Tetrahedron Lett. 1995; 36: 1605
- 2d Allmann R, Debaerdemaeker T, Friedrichsen W, Jürgens HJ, Betz M. Tetrahedron 1976; 32: 147
- 2e Kaicharla T, Bhojgude SS, Biju AT. Org. Lett. 2012; 14: 6238
- 2f Xu D, Chiaroni A, Largeron M. Org. Lett. 2005; 7: 5273
- 3a Takata T, Tajima R, Ando W. J. Org. Chem. 1983; 48: 4764
- 3b Nair V, Sethumadhavan D, Nair SM, Rath NP, Eigendorf GK. J. Org. Chem. 2002; 67: 7533
- 3c Nair V, Mathew B, Radhakrishnan KV, Rath NP. Tetrahedron 1999; 55: 11017
- 3d Nair V, Anilkumar G, Radhakrishnan KV, Sheela KC, Rath NP. Tetrahedron 1997; 53: 17361
- 4a Sagawa Y, Kobayashi S, Mukaiyama T. Chem. Lett. 1988; 17: 1105
- 4b Chiba K, Tada M. J. Chem. Soc., Chem. Commun. 1994; 0: 2485
- 5a Jung ME, Perez F. Org. Lett. 2009; 11: 2165
- 5b Wanzlick HW, Lehmann-Horchler M, Mohrmann S, Gritzky R, Heidepriem H, Pankow B. Angew. Chem. Int. Ed. 1964; 3: 401
- 5c Zhang N.-T, Gao X.-G, Zeng C.-C, Hu L.-M, Tian H.-Y, She Y.-B. RSC Adv. 2012; 2: 298
- 5d Gao X.-G, Zhang N.-T, Zenga C.-C, Liu Y.-D, Hu L.-M, Tian H.-Y. Curr. Org. Synth. 2014; 11: 141
- 6a Atobe M, Tateno H, Matsumura Y. Chem. Rev. 2018; 118: 4541
- 6b Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 6c Hardwick T, Ahmed N. RSC Adv. 2018; 8: 22233
- 7a Yoshida J.-i, Takahashi Y, Nagaki A. Chem. Commun. 2013; 49: 9896
- 7b Yoshida J.-i, Nagaki A, Yamada T. Chem. Eur. J. 2008; 14: 7450
- 8a Qu Y, Tsuneishi C, Tateno H, Matsumura Y, Atobe M. React. Chem. Eng. 2017; 2: 871
- 8b Mizuno M, Tateno H, Matsumura Y, Atobe M. React. Chem. Eng. 2017; 2: 642
- 8c Matsumura Y, Yamaji Y, Tateno H, Kashiwagi T, Atobe M. Chem. Lett. 2016; 45: 816
- 8d Arai T, Tateno H, Nakabayashi K, Kashiwagi T, Atobe M. Chem. Commun. 2015; 51: 4891
- 8e Tateno H, Matsumura Y, Nakabayashi K, Senboku H, Atobe M. RSC Adv. 2015; 5: 98721
- 9a Kashiwagi T, Amemiya F, Fuchigami T, Atobe M. Chem. Commun. 2012; 48: 2806
- 9b Kashiwagi T, Amemiya F, Fuchigami T, Atobe M. J. Flow Chem. 2012; 3: 17
- 10 Electrochemical Reaction in a Batch-Type Reactor The reaction of 4-tert-butylpyrocatechol (1; 10 mM) with 6,6-dimethylfulvene (3; 200 mM) was performed by using a graphite plate anode (working electrode; 2 × 2 cm2) and a Pt plate cathode (counter-electrode, 2 × 2 cm2) in a 100 mM solution of NaClO4 in MeCN (10 mL). A constant current (1.5 mA cm–2) was applied during the electrolysis. After the electrolysis was complete, the mixture was analyzed by HPLC to determine the yield of the Diels–Alder cycloadduct 4. Electrochemical Reactions in the Flow Microreactor; General Procedure A 10 mM solution of 4-tert-butylpyrocatechol in a 100 mM solution of NaClO4 in MeCN was introduced into the reactor from a syringe pump (Model 100; KD Scientific, Holliston, MA: see Figs. S1 and S2 in the Supporting Information). Constant-current electrolysis was performed at 1.5 mA cm–2 by using the electrochemical flow microreactor. The electrolyzed solution emerging from the microreactor was poured into CH2Cl2 containing the appropriate fulvene (200 mM), and the mixture was stirred for 8 h. The mixture was then analyzed by HPLC to determine the yield of the Diels–Alder cycloadduct. (3aR*,4S*,7R*,7aS*)-6-(tert-Butyl)-1-(1-methylethylidene)-3a,4,7,7a-tetrahydro-1H-4,7-ethanoindene-8,9-dione (4) Yellow solid; yield: 75%; mp 97.7 °C. IR (KBr): 2964, 1732, 1508, 1473, 1458, 1363, 1099, 812 cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.42 (dd, J = 5.7, 1.9 Hz, 1 H), 5.86 (ddd, J = 6.6, 2.2, 0.6 Hz, 1 H), 5.58 (dd, J = 5.7, 2.5 Hz, 1 H), 3.70 (dd, J = 3.0, 2.4 Hz, 1 H), 3.61 (dd, J = 6.8, 2.7 Hz, 1 H), 3.56 (d, J = 7.9 Hz, 1 H), 3.31 (d, J = 7.9 Hz, 1 H), 1.80 (s, 3 H), 1.77 (s, 3 H), 1.00 (s, 9 H). 13C NMR (126 MHz, CDCl3): δ = 191.5, 191.2, 151.8, 139.4, 135.6, 132.2, 125.2, 118.3, 54.1, 50.5, 46.4, 40.6, 35.3, 28.3, 21.7, 21.4. HRMS (ESI): m/z [M + Na]+ calcd for C18H22NaO2: 293.1512; found: 293.1498. (3aR*,4S*,7R*,7aS*)-6-tert-Butyl-1-(1-methylhexylidene)-3a,4,7,7a-tetrahydro-1H-4,7-ethanoindene-8,9-dione (6) Yellow solid; yield: 47%; mp 101.1 °C. IR (KBr): 2966, 2870, 1735, 1463, 1365, 1161, 813 cm–1. 1H NMR (500 MHz, CDCl3): δ = 6.44 (dd, J = 5.7, 1.9 Hz, 1 H), 5.84 (dd, J = 6.5, 2.1, 1 H), 5.60 (dd, J = 5.7, 2.5 Hz, 1 H), 3.69 (m, 1 H), 3.57 (dd, J = 6.8, 2.7 Hz, 1 H), 3.53 (m, 1 H), 3.34 (dd, J = 7.9, 2.5 Hz, 1 H), 2.10 (q, J = 7.04 Hz, 4 H), 1.48–1.55 (m, 1 H), 1.30–1.46 (m, 3 H) 1.00 (s, 9 H), 0.95 (t, J = 7.41 Hz, 3 H), 0.86 (t, J = 7.41 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 191.2, 191.2, 151.6, 139.9, 135.5, 134.0, 132.3, 118.1, 53.8, 51.1, 46.0, 40.0, 35.0, 34.5, 33.9, 28.1, 22.1, 21.6, 14.2, 13.9. HRMS (ESI) m/z [M + H]+ calcd for C22H31O2; 327.2309; found: 327.2319.
- 11 Nair V, Kumar S. Tetrahedron 1996; 52: 4029