Subscribe to RSS
DOI: 10.1055/s-0037-1611731
Solvent-Free Synthesis of α-Amino Ketones from α-Hydroxyl Ketones via A Novel Tandem Reaction Sequence Based on Heyns Rearrangement
This work was supported financially by the Natural Science Foundation of Sichuan province, China (2017JY0055) and the Youth Innovation Promotion Association CAS (2018402).Publication History
Received: 03 January 2019
Accepted after revision: 28 February 2019
Publication Date:
19 February 2019 (online)
Abstract
Heyns rearrangement have been famous for carbohydrate chemists for several decades. However, this reaction was underrated as a useful method for synthetic chemists due to preparative shortcomings. Herein we developed an efficient method for the synthesis of pharmaceutically important α-amino ketones from readily available α-hydroxy ketones and secondary amines through a tandem reaction sequence based on Heyns rearrangement. The reaction smoothly proceeded by using catalytic PTSA as catalyst without solvent. Primary and secondary α-hydroxy ketones were readily used and regioselectively afforded the correspondingly α-amino ketones with moderate yield.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611731.
- Supporting Information
-
References and Notes
- 1a Smith AB, Beauchamp TJ, LaMarche MJ, Kaufman MD, Qiu Y, Arimoto H, Jones DR, Kobayashi K. J. Am. Chem. Soc. 2000; 122: 8654
- 1b Trost BM, Knopf JD, Brindle CS. Chem. Rev. 2016; 116: 15035
- 1c Allred TK, Manoni F, Harran PG. Chem. Rev. 2017; 117: 11994
- 2a Walsh PJ, Li H, de Parrodi CA. Chem. Rev. 2007; 107: 2503
- 2b Martins MA. P, Frizzo CP, Moreira DN, Buriol L, Machado P. Chem. Rev. 2009; 109: 4140
- 3 Wang, Z. Heyns Rearrangement, In Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons, Inc., 2010.
- 4a Wrodnigg TM, Stütz AE. Angew. Chem. Int. Ed. 1999; 38: 827
- 4b Shan Y, Oulaidi F, Lahmann M. Tetrahedron Lett. 2013; 54: 3960
- 4c Guzi TJ, Macdonald TL. Tetrahedron Lett. 1996; 37: 2939
- 4d Miyairi S, Maeda K, Oe T, Kato T, Naganuma A. Steroids 1999; 64: 252
- 5 Miyairi S, Ichikawa T, Nambara T. Tetrahedron Lett. 1991; 32: 1213
- 6a Melis N, Secci F, Boddaert T, Aitken DJ, Frongia A. Chem. Commun. 2015; 51: 15272
- 6b Melis N, Ghisu L, Guillot R, Caboni P, Secci F, Aitken DJ, Frongia A. Eur. J. Org. Chem. 2015; 4358
- 6c Gallas K, Pototschnig G, Adanitsch F, Stutz AE, Wrodnigg TM. Beilstein. J. Org. Chem. 2012; 8: 1619
- 6d Frongia A, Secci F, Capitta F, Piras PP, Sanna ML. Chem. Commun. 2013; 49: 8812
- 6e Frongia A, Melis N, Serra I, Secci F, Piras PP, Caboni P. Asian J. Org. Chem. 2014; 3: 378
- 6f Aitken DJ, Caboni P, Eijsberg H, Frongia A, Guillot R, Ollivier J, Piras PP, Secci F. Adv. Synth. Catal. 2014; 356: 941
- 7 Li G, Tang L, Liu H, Wang Y, Zhao G, Tang Z. Org. Lett. 2016; 18: 4526
- 8a Blough BE, Landavazo A, Partilla JS, Baumann MH, Decker AM, Page KM, Rothman RB. ACS Med. Chem. Lett. 2014; 5: 623
- 8b Aarde SM, Huang PK, Creehan KM, Dickerson TJ, Taffe MA. Neuropharmacology 2013; 71: 130
- 8c Aarde SM, Angrish D, Barlow DJ, Wright MJ. Jr, Vandewater SA, Creehan KM, Houseknecht KL, Dickerson TJ, Taffe MA. Addict. Biol. 2013; 18: 786
- 9a Myers MC. W, Iera JA, Bang J.-K, Hara T, Saito S. i, Zambetti GP, Appella DH. J. Am. Chem. Soc. 2005; 127: 6152
- 9b Meltzer PC, Butler D, Deschamps JR, Madras BK. J. Med. Chem. 2006; 49: 1420
- 9c Carroll FI, Blough BE, Abraham P, Mills AC, Holleman JA, Wolckenhauer SA, Decker AM, Landavazo A, McElroy KT, Navarro HA, Gatch MB, Forster MJ. J. Med. Chem. 2009; 52: 6768
- 9d Bouteiller C, Becerril-Ortega J, Marchand P, Nicole O, Barré L, Buisson A, Perrio C. Org. Biomol. Chem. 2010; 8: 1111
- 10a Xie L, Wu Y, Yi W, Zhu L, Xiang J, He W. J. Org. Chem. 2013; 78: 9190
- 10b Tanemura K, Suzuki T, Nishida Y, Satsumabayashi K, Horaguchi T. Chem. Commun. 2004; 470
- 10c Perrine DM, Ross JT, Nervi SJ, Zimmerman RH, Short A. J. Chem. Ed. 2000; 77: 1479
- 10d Jiang Q, Sheng W, Guo C. Green Chem. 2013; 15: 2175
- 10e Arbuj SS, Waghmode SB, Ramaswamy AV. Tetrahedron Lett. 2007; 48: 1411
- 11 Evans RW, Zbieg JR, Zhu S, Li W, MacMillan DW. J. Am. Chem. Soc. 2013; 135: 16074
- 12 Jiang Q, Xu B, Zhao A, Jia J, Liu T, Guo C. J. Org. Chem. 2014; 79: 8750
- 13 Guha S, Rajeshkumar V, Kotha SS, Sekar G. Org. Lett. 2015; 17: 406
- 14a Kotha SS, Sekar G. Tetrahedron Lett. 2015; 56: 6323
- 14b Kotha SS, Chandrasekar S, Sahu S, Sekar G. Eur. J. Org. Chem. 2014; 7451
- 14c Sahoo SC, Nath U, Pan SC. Eur. J. Org. Chem. 2017; 4434
- 15 Preparation of 2-[Methyl(phenyl)amino]-1-phenylethan-1-one (3j) – General Procedure 2-Hydroxyacetophenone (0.1 mmol) and morpholine (0.1 mmol) were added in a reaction vessel followed by catalytic PTSA (0.005 mmol). The reaction mixture was stirred under nitrogen atmosphere overnight at 50 ℃. After full conversion of the starting material, the reaction mixture was cooled down to room temperature and purified by silica gel flash column directly (eluent: petroleum ether/ethyl acetate = 3:1); colorless oil, 14.2 mg (63%). 1H NMR (400 MHz, CDCl3): δ = 8.11–7.96 (m, 2 H), 7.64 (t, J = 7.4 Hz, 1 H), 7.52 (t, J = 7.6 Hz, 2 H), 7.24 (dd, J = 8.7, 7.4 Hz, 2 H), 6.83–6.59 (m, 3 H), 4.81 (s, 2 H), 3.13 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 196.48 (s), 149.20 (s), 135.46 (s), 133.55 (s), 129.21 (s), 128.82 (s), 127.81 (s), 117.12 (s), 112.28 (s), 77.34 (s), 77.03 (s), 76.71 (s), 58.99 (s), 39.58 (s). HRMS (ESI): C15H15NO neutral mass: 225.11536; observed [M + H]+: 226.12296.
- 16 Preparation of 2-(Indolin-1-yl)-1-phenylpropan-1-one (4i) The reaction executed with general procedure, 24 h at 80 °C; brown oil, 11.3 mg (45%). 1H NMR (400 MHz, CDCl3): δ = 8.12–8.04 (m, 2 H), 7.64–7.53 (m, 1 H), 7.53–7.39 (m, 2 H), 7.19–7.07 (m, 2 H), 6.70 (dd, J = 10.7, 3.9 Hz, 1 H), 6.58 (d, J = 7.7 Hz, 1 H), 5.22–5.10 (m, 1 H), 3.47 (dd, J = 18.2, 9.5 Hz, 1 H), 3.32 (td, J = 8.9, 5.2 Hz, 1 H), 3.01–2.85 (m, 2 H), 1.40 (t, J = 7.4 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 199.23 (s), 150.03 (s), 135.78 (s), 133.24 (s), 130.16 (s), 128.54 (s), 127.38 (s), 124.71 (s), 117.80 (s), 106.31 (s), 55.04 (s), 47.65 (s), 28.26 (s), 10.15 (s). HRMS (ESI): C17H17NO2 neutral mass: 251.13101; observed [M + H]+: 252.13811.
- 17 Preparation of 1-(4-Bromophenyl)-2-morpholinobutan-1-one (4n) The reaction executed with the general procedure; yellow oil, 17.1 mg (55%). 1H NMR (400 MHz, CDCl3): δ = 8.07–7.86 (m, 2 H), 7.75–7.56 (m, 2 H), 3.81 (dd, J = 9.3, 4.7 Hz, 1 H), 3.68 (dd, J = 10.8, 6.2 Hz, 4 H), 2.75–2.63 (m, 2 H), 2.62–2.48 (m, 2 H), 1.97–1.70 (m, 2 H), 0.92–0.84 (m, 4 H). 13C NMR (101 MHz, CDCl3): δ = 198.59 (s), 131.82 (s), 130.21 (s), 77.33 (s), 77.02 (s), 76.70 (s), 70.99 (s), 67.31 (s), 50.28 (s), 19.06 (s), 10.97 (s), 1.02 (s). HRMS (ESI): C14H18BrNO2 neutral mass: 311.05209; observed [M + H]+: 312.05453.
- 18 Sánchez-Viesca F. Am. J. Chem. 2015; 5: 86