Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(06): 726-730
DOI: 10.1055/s-0037-1611741
DOI: 10.1055/s-0037-1611741
letter
Copper-Catalyzed Acetylation of Electron-Rich Phenols and Anilines
We thank the National Natural Science Foundation of China (No. 21572094), the Natural Science Foundation of Zhejiang Province (No. LY18B020005, LQ18B020001), and the China National Students’ Innovation and Entrepreneurship Training Program (No. 201710352005) for financial support.
Further Information
Publication History
Received: 21 January 2019
Accepted after revision: 05 February 2019
Publication Date:
27 February 2019 (online)
◊These authors contributed equally.
Abstract
An approach has been developed for the copper-catalyzed acetylation of phenols and anilines with potassium thioacetate as an acetylating reagent. Although only electron-rich phenols and anilines are compatible with this protocol, the reaction can provide moderate to high yields under mild conditions. Compared with other acetylating reagents, the current reagent has certain advantages, such as its low cost, easy availability, stability, insensitivity to water or air, and ease of storage.
Key words
acetylation - phenols - anilines - copper catalysis - potassium thioacetate - butyl nitriteSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1611741.
- Supporting Information
-
References and Notes
- 1a Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . 3rd ed. Wiley; New York: 1999
- 1b Kocieński PJ. Protecting Groups . Thieme; Stuttgart: 1994
- 1c Otera J. Chem. Rev. 1993; 93: 1449
- 2a Valeur E, Bradley M. Chem. Soc. Rev. 2009; 38: 606
- 2b Crespo L, Sanclimens G, Pons M, Giralt E, Royo M, Albericio F. Chem. Rev. 2005; 105: 1663
- 2c Humphrey JM, Chamberlin AR. Chem. Rev. 1997; 97: 2243
- 2d Fusetani N, Matsunaga S. Chem. Rev. 1993; 93: 1793
- 3a Steglich W, Höfle G. Angew. Chem. Int. Ed. Engl. 1969; 8: 981
- 3b Vedejs E, Diver ST. J. Am. Chem. Soc. 1993; 115: 3358
- 3c Lee S.-g, Park JH. J. Mol. Catal. A: Chem. 2003; 194: 49
- 3d Kamal A, Khan MN. A, Reddy KS, Srikanth YV. V, Krishnaji T. Tetrahedron Lett. 2007; 48: 3813
- 3e Satam JR, Jayaram RV. Catal. Commun. 2008; 9: 2365
- 3f Farhadi S, Panahandehjoo S. Appl. Catal., A 2010; 382: 293
- 3g Balaskar RS, Gavade SN, Mane MS, Shingare MS, Mane DV. Green Chem. Lett. Rev. 2011; 4: 91
- 3h López I, Bravo JL, Caraballo M, Barneto JL, Silvero G. Tetrahedron Lett. 2011; 52: 3339
- 3i Kumar NU, Reddy BS, Reddy VP, Bandichhor R. Tetrahedron Lett. 2014; 55: 910
- 3j Bajracharya DB, Shrestha SS. Synth. Commun. 2018; 48: 1688
- 4a Murashige R, Hayashi Y, Ohmori S, Torii A, Aizu Y, Muto Y, Murai Y, Oda Y, Hashimoto M. Tetrahedron 2011; 67: 641
- 4b Choudhary VR, Dumbre DK. Catal. Commun. 2011; 12: 1351
- 5a Das VK, Devi RR, Raul PK, Thakur AJ. Green Chem. 2012; 14: 847
- 5b Mandi U, Roy AS, Banerjee B, Islam SM. RSC Adv. 2014; 4: 42670
- 5c Li N, Wang L, Zhang L, Zhao W, Qiao J, Xu X, Liang Z. ChemCatChem 2018; 10: 3532
- 5d Alamgholiloo H, Rostamnia S, Hassankhani A, Banaei R. Synlett 2018; 29: 1593
- 6a Tong X, Ren Z, Qu X, Yang Q, Zhang W. Res. Chem. Intermed. 2012; 38: 1961
- 6b Sanz Sharley DD, Williams JM. J. Chem. Commun. 2017; 53: 2020
- 6c Singha R, Ray JK. Tetrahedron Lett. 2016; 57: 5395
- 6d Basumatary G, Bez G. Tetrahedron Lett. 2017; 58: 4312
- 6e Yoshida T, Kawamura S, Nakata K. Tetrahedron Lett. 2017; 58: 1181
- 7 Zhang L, Wang W, Wang A, Cui Y, Yang X, Huang Y, Liu X, Liu W, Son J.-Y, Oji H, Zhang T. Green Chem. 2013; 15: 2680
- 8a Yang Y.-C, Leung DY. C, Toy PH. Synlett 2013; 24: 1870
- 8b Kumar M, Bagchi S, Sharma A. New J. Chem. 2015; 39: 8329
- 9a Sun X, Wang M, Li P, Zhang X, Wang L. Green Chem. 2013; 15: 3289
- 9b Sun X, Li P, Zhang X, Wang L. Org. Lett. 2014; 16: 2126
- 9c Guo R, Zhu C, Sheng Z, Li Y, Yin W, Chu C. Tetrahedron Lett. 2015; 56: 6223
- 9d Wang S, Yu Y, Chen X, Zhu H, Du P, Liu G, Lou L, Li H, Wang W. Tetrahedron Lett. 2015; 56: 3093
- 9e Biallas P, Häring PA, Kirsch SF. Org. Biomol. Chem. 2017; 15: 3184
- 10 Chikkulapalli A, Aavula SK, Rifahath Mona NP, Karithikeyan K, Vinodh Kumar CH, Manjunatha Sulur G, Sumathi S. Tetrahedron Lett. 2015; 56: 3799
- 11a Olivito F, Costanzo P, Di Gioia ML, Nardi M, Oliverio M, Procopio A. Org. Biomol. Chem. 2018; 16: 7753
- 11b Wang R, Liu J, Xu J. Adv. Synth. Catal. 2014; 357: 159
- 11c Yang H.-W, Choi J.-S, Lee S.-J, Yoo B.-W, Yoon CM. J. Sulfur Chem. 2016; 37: 134
- 11d Dong N, Zhang Z.-P, Xue X.-S, Li X, Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 1460
- 11e Soria-Castro SM, Peñéñory AB. Beilstein J. Org. Chem. 2013; 9: 467
- 11f Soria-Castro SM, Andrada DM, Caminos DA, Argüello JE, Robert M, Peñéñory AB. J. Org. Chem. 2017; 82: 11464
- 11g Shimizu M, Ogawa M, Tamagawa T, Shigitani R, Nakatani M, Nakano Y. Eur. J. Org. Chem. 2016; 2785
- 12a Wu W, Zhang Z, Liebeskind LS. J. Am. Chem. Soc. 2011; 133: 14256
- 12b Mali SM, Jadhav SV, Gopi HN. Chem. Commun. 2012; 48: 7085
- 12c Mali SM, Bhaisare RD, Gopi HN. J. Org. Chem. 2013; 78: 5550
- 12d Liu H, Zhao L, Yuan Y, Xu Z, Chen K, Qiu S, Tan H. ACS Catal. 2016; 6: 1732
- 12e Das S, Ray S, Ghosh AB, Samanta PK, Samanta S, Adhikary B, Biswas P. Appl. Organomet. Chem. 2018; 32: e4199
- 13 Acetylation of Anilines and Phenols with Potassium Thioacetate: General Procedure The appropriate aniline or phenol (0.5 mmol), KSAc (3.0 equiv), Cu(OAc)2·H2O (0.2 equiv), and MeCN (3 mL) were added to a screw-capped vial under air, and the vial was placed in a temperature-controlled oil bath at 80 °C. When the reaction was complete (TLC), the vial was removed from the oil bath and allowed to cool to r.t. The solution was filtered through a short column of silica gel that was washed with EtOAc. The filtrate was concentrated under reduced pressure to give a crude product that was purified by flash column chromatography (silica gel, PE–EtOAc). 2-Naphthyl Acetate (3a) Creamy-white solid powder; yield: 86.5 mg (93%); mp 68–70 °C. 1H NMR (300 MHz, CDCl3): δ = 7.91–7.84 (m, 3 H), 7.61 (s, 1 H), 7.52 (t, J = 3.9 Hz, 2 H), 7.29 (t, J = 7.2 Hz, 1 H), 2.40 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 169.8, 148.4, 133.8, 131.6, 129.5, 127.9, 127.7, 126.7, 125.8, 121.2, 118.6, 21.3.
For selected examples:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see:
For selected examples, see: