Synlett 2019; 30(06): 748-752
DOI: 10.1055/s-0037-1612215
letter
© Georg Thieme Verlag Stuttgart · New York

A New Formal Synthetic Route to Entecavir

Lixia Liu
a   School of Life Science, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China
,
Yongli Sun
a   School of Life Science, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China
,
Jiwu Wang
b   School of Pharmacy, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China
,
Wentao Ou
a   School of Life Science, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China
,
Xiaoji Wang*
a   School of Life Science, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China
,
Shuangping Huang*
b   School of Pharmacy, Jiangxi Science and Technology Normal University, 330013 Nanchang, Jiangxi, P. R. of China
c   College of Biomedical Engineering, Taiyuan University of Technology, 030024 Taiyuan, Shanxi, P. R. of China   Email: 2012207455@tju.edu.cn
› Author Affiliations

This work was financially supported by the National Science Foundation of China (21062088, 21562020) and the Science and Technology Plan Project of Jiangxi Province (No. 20151BBG70028, 20142BBE50006).
Further Information

Publication History

Received: 21 December 2018

Accepted after revision: 20 January 2019

Publication Date:
06 March 2019 (online)


Abstract

We describe a new and straightforward approach to the formal synthesis of the hepatitis B virus inhibitor entecavir, an important hepatitis B drug, in ten steps overall. Key features of the route are a Morita–Baylis–Hillman reaction, a Sharpless asymmetric epoxidation, a reductive epoxide opening of an α,β-epoxy ketone, and a Riley selenium dioxide oxidation.

Supporting Information

 
  • References and Notes

  • 1 Razavi-Shearer D, Gamkrelidze I, Nguyen MH. et al. Lancet Gastroenterol. Hepatol. 2018; 3: 383
  • 2 Bisacchi GS, Chao ST, Bachard C, Daris JP, Innaimo S, Jacobs GA, Kocy O, Lapointe P, Martel A, Merchant Z, Slusarchyk WA, Sundeen JE, Young MG, Colonno R, Zahler R. Bioorg. Med. Chem. Lett. 1997; 7: 127
    • 3a Zahler R, Slusarchyk WA. EP 0335355, 1989 .
    • 3b Innaimo SF, Seifer M, Bisacchi GS, Standring DN, Zahler R, Colonno RJ. Antimicrob. Agents Chemother. 1997; 41: 1444
    • 3c Pendri YR, Chen C.-PH, Patel SS, Evans JM, Liang J, Kronenthal DR, Powers GL, Prasad SJ, Bien JT, Shi Z, Patel RN, Chan YY, Rijhwani SK, Singh AK, Wang S, Stojanovic M, Polniaszek R, Lewis C, Thottathil J, Krishnamurty D, Zhou MX, Vemishetti P. WO 2004052310, 2004
    • 3d Ziegler FE, Sarpong MA. Tetrahedron 2003; 59: 9013
    • 3e Zhou MX, Reiff EA, Vemishetti P, Pendri YR, Singh AK, Prasad SJ, Dhokte UP, Qian X, Mountford P, Hartung KB, Sailes H. WO 2005118585, 2005
    • 3f Rawal RK, Singh US, Gadthula S, Chu CK. Curr. Protoc. Nucleic Acid Chem. 2011; 47: 14.7.1
    • 3g Zhou B, Li Y. Tetrahedron Lett. 2012; 53: 502
    • 3h Liu X, Jiao X, Wu Q, Tian C, Li R, Xie P. Tetrahedron Lett. 2012; 53: 3805
    • 3i Velasco J, Ariza X, Badía L, Bartra M, Berenguer R, Farràs J, Gallardo J, Garcia J, Gasanz Y. J. Org. Chem. 2013; 78: 5482
    • 3j Hyun YE, Kim H.-R, Choi Y, Jeong LS. Asian J. Org. Chem. 2017; 6: 1213
    • 3k Wang S.-c, Zhang X.-q, Gu H.-m, Zhu X.-y, Guo Y.-j. Org. Prep. Proced. Int. 2017; 49: 568
    • 3l Xu H, Wang F, Xue W, Zheng Y, Wang Q, Qiu F, Jin Y. Org. Process Res. Dev. 2018; 22: 377
    • 3m Gioti EG, Koftis TV, Neokosmidis E, Vastardi E, Kotoulas SS, Trakossas S, Tsatsas T, Anagnostaki EA, Panagiotidis TD, Zacharis C, Tolika EP, Varvogli A.-A, Andreou T, Gallos JK. Tetrahedron 2018; 74: 519
  • 4 Huang S, Liu D, Tang L, Huang F, Yang W, Wang X. Synlett 2015; 26: 2019
  • 5 Ito H, Takenaka Y, Fukunishi S, Iguchi K. Synthesis 2005; 3035
  • 6 Bailey M, Staton I, Ashton PR, Markó IE, Ollis WD. Tetrahedron: Asymmetry 1991; 2: 495
  • 7 Barrero AF, Herrador MM, Quílez del Moral JF, Arteaga P, Meine N, Pérez-Morales MC, Catalán JV. Org. Biomol. Chem. 2011; 9: 1118
  • 8 Singh V, Porinchu M. Tetrahedron 1996; 52: 7087
  • 9 Salvador JA. R, Leitão AJ. L, Sá e Melo ML, Hanson JR. Tetrahedron Lett. 2005; 46: 1067
  • 10 Engman L, Stern D. J. Org. Chem. 1994; 59: 5179
    • 11a Nysted, L. N. US 3865848, 1975
    • 11b Anon Aldrichimica Acta 1993, 26, 14.
  • 12 Ogan MD, Kucera DJ, Pendri YR, Rinehart JK. J. Labelled Compd. Radiopharm. 2005; 48: 645
  • 13 Gioiello A, Sardella R, Rosatelli E, Sadeghpour BM, Natalini B, Pellicciari R. Steroids 2012; 77: 250
  • 14 {[(1R,3S,4S)-4-methyl-5-methylenecyclopentane-1,3-diyl]bis(oxy)}bis[tert-butyl(dimethyl)silane] (1) A solution of the protected diol 11 (1.2 g, 3.2 mmol) in THF (14 mL) was treated by dropwise addition of a 1.0 M solution of LiBHEt3 in THF (6.5 mL, 6.4 mmol) at –78 ℃, and the mixture was stirred for 15 min. The reaction was then quenched by addition of sat. aq NH4Cl, and the resultant mixture was stirred at r.t. for another 20 min. The mixture was then poured into sat. aq potassium sodium tartrate (Rochelle salt), and the aqueous phase was extracted with Et2O (3 × 20 mL). The organic layers were combined, washed with brine, dried (Na2SO4), and concentrated. The residue was purified by column chromatography [silica gel, PE–EtOAc (10:1)] to give a clear solid; yield: 1.04 g (2.8 mmol, 87%); mp 63–65 °C, [α]D 20 –8.18 (c 1.25, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 0.03 (d, J = 4.9 Hz, 6 H), 0.08 (s, 6 H), 0.88 (s, 18 H), 1.82 (d, J = 13.6 Hz, 1 H), 1.93–2.04 (m, 1 H), 2.74 (m, 1 H), 3.30 (dd, J = 10.2, 9.0 Hz, 1 H), 3.56 (dd, J = 10.3, 5.1 Hz, 1 H), 4.35 (d, J = 9.6 Hz, 2 H), 5.12 (s, 1 H), 5.38 (s, 1 H).13C NMR (100 MHz, CDCl3) = –5.4, –5.3, –4.7, 18.0, 18.4, 25.9, 26.0, 42.2, 55.1, 64.8, 75.4, 111.7, 154.4. HRMS (ESI): m/z [M + Na]+ calcd for C19H40NaO3Si2: 395.2408; found: 395.2406.