Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2019; 30(06): 748-752
DOI: 10.1055/s-0037-1612215
DOI: 10.1055/s-0037-1612215
letter
A New Formal Synthetic Route to Entecavir
This work was financially supported by the National Science Foundation of China (21062088, 21562020) and the Science and Technology Plan Project of Jiangxi Province (No. 20151BBG70028, 20142BBE50006).
Further Information
Publication History
Received: 21 December 2018
Accepted after revision: 20 January 2019
Publication Date:
06 March 2019 (online)
Abstract
We describe a new and straightforward approach to the formal synthesis of the hepatitis B virus inhibitor entecavir, an important hepatitis B drug, in ten steps overall. Key features of the route are a Morita–Baylis–Hillman reaction, a Sharpless asymmetric epoxidation, a reductive epoxide opening of an α,β-epoxy ketone, and a Riley selenium dioxide oxidation.
Key words
entecavir - formal synthesis - epoxy ketones - Sharpless epoxidation - ring cleavage - Riley oxidationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0037-1612215.
- Supporting Information
-
References and Notes
- 1 Razavi-Shearer D, Gamkrelidze I, Nguyen MH. et al. Lancet Gastroenterol. Hepatol. 2018; 3: 383
- 2 Bisacchi GS, Chao ST, Bachard C, Daris JP, Innaimo S, Jacobs GA, Kocy O, Lapointe P, Martel A, Merchant Z, Slusarchyk WA, Sundeen JE, Young MG, Colonno R, Zahler R. Bioorg. Med. Chem. Lett. 1997; 7: 127
- 3a Zahler R, Slusarchyk WA. EP 0335355, 1989 .
- 3b Innaimo SF, Seifer M, Bisacchi GS, Standring DN, Zahler R, Colonno RJ. Antimicrob. Agents Chemother. 1997; 41: 1444
- 3c Pendri YR, Chen C.-PH, Patel SS, Evans JM, Liang J, Kronenthal DR, Powers GL, Prasad SJ, Bien JT, Shi Z, Patel RN, Chan YY, Rijhwani SK, Singh AK, Wang S, Stojanovic M, Polniaszek R, Lewis C, Thottathil J, Krishnamurty D, Zhou MX, Vemishetti P. WO 2004052310, 2004
- 3d Ziegler FE, Sarpong MA. Tetrahedron 2003; 59: 9013
- 3e Zhou MX, Reiff EA, Vemishetti P, Pendri YR, Singh AK, Prasad SJ, Dhokte UP, Qian X, Mountford P, Hartung KB, Sailes H. WO 2005118585, 2005
- 3f Rawal RK, Singh US, Gadthula S, Chu CK. Curr. Protoc. Nucleic Acid Chem. 2011; 47: 14.7.1
- 3g Zhou B, Li Y. Tetrahedron Lett. 2012; 53: 502
- 3h Liu X, Jiao X, Wu Q, Tian C, Li R, Xie P. Tetrahedron Lett. 2012; 53: 3805
- 3i Velasco J, Ariza X, Badía L, Bartra M, Berenguer R, Farràs J, Gallardo J, Garcia J, Gasanz Y. J. Org. Chem. 2013; 78: 5482
- 3j Hyun YE, Kim H.-R, Choi Y, Jeong LS. Asian J. Org. Chem. 2017; 6: 1213
- 3k Wang S.-c, Zhang X.-q, Gu H.-m, Zhu X.-y, Guo Y.-j. Org. Prep. Proced. Int. 2017; 49: 568
- 3l Xu H, Wang F, Xue W, Zheng Y, Wang Q, Qiu F, Jin Y. Org. Process Res. Dev. 2018; 22: 377
- 3m Gioti EG, Koftis TV, Neokosmidis E, Vastardi E, Kotoulas SS, Trakossas S, Tsatsas T, Anagnostaki EA, Panagiotidis TD, Zacharis C, Tolika EP, Varvogli A.-A, Andreou T, Gallos JK. Tetrahedron 2018; 74: 519
- 4 Huang S, Liu D, Tang L, Huang F, Yang W, Wang X. Synlett 2015; 26: 2019
- 5 Ito H, Takenaka Y, Fukunishi S, Iguchi K. Synthesis 2005; 3035
- 6 Bailey M, Staton I, Ashton PR, Markó IE, Ollis WD. Tetrahedron: Asymmetry 1991; 2: 495
- 7 Barrero AF, Herrador MM, Quílez del Moral JF, Arteaga P, Meine N, Pérez-Morales MC, Catalán JV. Org. Biomol. Chem. 2011; 9: 1118
- 8 Singh V, Porinchu M. Tetrahedron 1996; 52: 7087
- 9 Salvador JA. R, Leitão AJ. L, Sá e Melo ML, Hanson JR. Tetrahedron Lett. 2005; 46: 1067
- 10 Engman L, Stern D. J. Org. Chem. 1994; 59: 5179
- 12 Ogan MD, Kucera DJ, Pendri YR, Rinehart JK. J. Labelled Compd. Radiopharm. 2005; 48: 645
- 13 Gioiello A, Sardella R, Rosatelli E, Sadeghpour BM, Natalini B, Pellicciari R. Steroids 2012; 77: 250
- 14 {[(1R,3S,4S)-4-methyl-5-methylenecyclopentane-1,3-diyl]bis(oxy)}bis[tert-butyl(dimethyl)silane] (1) A solution of the protected diol 11 (1.2 g, 3.2 mmol) in THF (14 mL) was treated by dropwise addition of a 1.0 M solution of LiBHEt3 in THF (6.5 mL, 6.4 mmol) at –78 ℃, and the mixture was stirred for 15 min. The reaction was then quenched by addition of sat. aq NH4Cl, and the resultant mixture was stirred at r.t. for another 20 min. The mixture was then poured into sat. aq potassium sodium tartrate (Rochelle salt), and the aqueous phase was extracted with Et2O (3 × 20 mL). The organic layers were combined, washed with brine, dried (Na2SO4), and concentrated. The residue was purified by column chromatography [silica gel, PE–EtOAc (10:1)] to give a clear solid; yield: 1.04 g (2.8 mmol, 87%); mp 63–65 °C, [α]D 20 –8.18 (c 1.25, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 0.03 (d, J = 4.9 Hz, 6 H), 0.08 (s, 6 H), 0.88 (s, 18 H), 1.82 (d, J = 13.6 Hz, 1 H), 1.93–2.04 (m, 1 H), 2.74 (m, 1 H), 3.30 (dd, J = 10.2, 9.0 Hz, 1 H), 3.56 (dd, J = 10.3, 5.1 Hz, 1 H), 4.35 (d, J = 9.6 Hz, 2 H), 5.12 (s, 1 H), 5.38 (s, 1 H).13C NMR (100 MHz, CDCl3) = –5.4, –5.3, –4.7, 18.0, 18.4, 25.9, 26.0, 42.2, 55.1, 64.8, 75.4, 111.7, 154.4. HRMS (ESI): m/z [M + Na]+ calcd for C19H40NaO3Si2: 395.2408; found: 395.2406.