Thromb Haemost 2002; 87(04): 756-762
DOI: 10.1055/s-0037-1613076
Review Article
Schattauer GmbH

Identification of Critical Residues for Ligand Binding in the Integrin β3 I-domain by Site-directed Mutagenesis

Jun Yamanouchi
1   Department of Internal Medicine 1, Shigenobu, Ehime, Japan
,
Takaaki Hato
2   Division of Blood Transfusion, Ehime University School of Medicine, Shigenobu, Ehime, Japan
,
Tatsushiro Tamura
1   Department of Internal Medicine 1, Shigenobu, Ehime, Japan
,
Shigeru Fujita
1   Department of Internal Medicine 1, Shigenobu, Ehime, Japan
2   Division of Blood Transfusion, Ehime University School of Medicine, Shigenobu, Ehime, Japan
› Author Affiliations
Further Information

Publication History

Received 16 November 2001

Accepted 09 January 2002

Publication Date:
08 December 2017 (online)

Summary

To define the structural basis of ligand recognition by αIIb β3, we conducted site-directed mutagenesis of residues located on the top surface of the β3 I-domain that is homologous to the I-domain of several α subunits and contains a putative ligand binding site. Here we identify D158 and N215 in β3 as novel residues critical for ligand binding. Alanine substitution of D158 or N215 abolished binding of a ligand-mimetic antibody and fibrinogen to αIIb β3 induced by different types of integrin activation. CHO cells expressing recombinant αIIb β3 bearing D158A or N215A mutation did not adhere to fibrinogen. These mutations had the same effect on ligand binding to another β3 integrin, αV β3. Compared to the αI-domain structure, the βB-βC loop containing D158 in the β3 I-domain is quite different in length and sequence. These results suggest that the structure for ligand recognition is different in the βI- and αI-domains.

 
  • References

  • 1 Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998; 94: 657-66.
  • 2 Ruggeri ZM, Dent JA, Saldivar E. Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood 1999; 94: 172-8.
  • 3 Tsuji S, Sugimoto M, Miyata S, Kuwahara M, Kinoshita S, Yoshioka A. Real-time analysis of mural thrombus formation in various platelet aggregation disorders: Distinct shear-dependent roles of platelet receptors and adhesive proteins under flow. Blood 1999; 94: 968-75.
  • 4 Coller BS. Anti-GPIIb/IIIa drugs: Current strategies and future directions. Thromb Haemost 2001; 86: 427-43.
  • 5 Lee JO, Rieu P, Arnaout MA, Liddington R. Crystal structure of the A domain from the a subunit of integrin CR3 (CD11b/CD18). Cell 1995; 80: 631-8.
  • 6 Tozer EC, Liddington RC, Sutcliffe MJ, Smeeton AH, Loftus JC. Ligand binding to integrin αIIb β3 is dependent on a MIDAS-like domain in the β3 subunit. J Biol Chem 1996; 271: 21978-84.
  • 7 Tuckwell DS, Humphries MJ. A structure prediction for the ligand-binding region of the integrin β subunit: evidence for the presence of a von Willebrand factor A domain. FEBS Lett 1997; 400: 297-303.
  • 8 Huang CC, Zang Q, Takagi J, Springer TA. Structural and functional studies with antibodies to the integrin β2 subunit – A model for the I-like domain. J Biol Chem 2000; 275: 21514-24.
  • 9 Xiong JP, Stehle T, Diefenbach B, Zhang R, Dunker R, Scott DL, Joachimiak A, Goodman SL, Arnaout MA. Crystal structure of the extracellular segment of integrin αV β3 . Science 2001; 294: 339-45.
  • 10 D’Souza SE, Ginsberg MH, Burke TA, Lam SC-T, Plow EF. Localization of the Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 1988; 242: 91-3.
  • 11 Charo IF, Nannizzi L, Phillips DR, Hsu MA, Scarborough RM. Inhibition of fibrinogen binding to GPIIb-IIIa by a GPIIIa peptide. J Biol Chem 1991; 266: 1415-21.
  • 12 D’Souza SE, Haas TA, Piotrowicz RS, Byers-Ward V, McGrath DE, Soule HR, Cierniewski C, Plow EF, Smith JW. Ligand and cation binding are dual functions of a discrete segment of the integrin β3 subunit: Cation displacement is involved in ligand binding. Cell 1994; 79: 659-67.
  • 13 Pasqualini R, Koivunen E, Ruoslahti E. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol 1995; 130: 1189-96.
  • 14 Loftus JC, O’Toole TE, Plow EF, Glass A, Frelinger AL, Ginsberg MH. A β3 integrin mutation abolishes ligand binding and alters divalent cationdependent conformation. Science 1990; 249: 915-8.
  • 15 Bajt ML, Loftus JC. Mutation of a ligand binding domain of β3 integrin. Integral role of oxygenated residues in αIIb β3 (GPIIb-IIIA) receptor function. J Biol Chem 1994; 269: 20913-9.
  • 16 Shattil SJ, Hoxie JA, Cunningham M, Brass LF. Changes in the platelet membrane glycoprotein IIb-IIIa complex during platelet activation. J Biol Chem 1985; 260: 11107-14.
  • 17 Pampori N, Hato T, Stupack DG, Aidoudi S, Cheresh DA, Nemerow GR, Shattil SJ. Mechanisms and consequences of affinity modulation of integrin αv β3 detected with a novel patch-engineered monovalent ligand. J Biol Chem 1999; 274: 21609-16.
  • 18 Tokuhira M, Handa M, Kamata T, Oda A, Katayama M, Tomiyama Y, Murata M, Kawai Y, Watanabe K, Ikeda Y. A novel regulatory epitope defined by a murine monoclonal antibody to the platelet GPIIb-IIIa complex (αIIb β3 integrin). Thromb Haemost 1996; 76: 1038-46.
  • 19 Hato T. The role of glycoprotein IIb-IIIa complex in ristocetin-stimulated platelets as revealed by a monoclonal antibody. Acta Haematologica Jpn 1987; 50: 129-37.
  • 20 Hato T, Ikeda K, Yasukawa M, Watanabe A, Kobayashi Y. Exposure of platelet fibrinogen receptors by a monoclonal antibody to CD9 antigen. Blood 1988; 72: 224-9.
  • 21 Newman PJ, Allen RW, Kahn RA, Kunicki TJ. Quantitation of membrane glycoprotein IIIa on intact human platelets using the monoclonal antibody, AP-3. Blood 1985; 65: 227-32.
  • 22 O’Toole TE, Katagiri Y, Faull RJ, Peter K, Tamura R, Quaranta V, Loftus JC, Shattil SJ, Ginsberg MH. Integrin cytoplasmic domains mediate insideout signal transduction. J Cell Biol 1994; 124: 1047-59.
  • 23 Higuchi R, Krummel B, Saiki RK. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 1988; 16: 7351-67.
  • 24 Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin αIIb β3 . J Cell Biol 1998; 141: 1685-95.
  • 25 Bajt ML, Ginsberg MH, Frelinger III AL, Berndt MC, Loftus JC. A spontaneous mutation of integrin αIIb β3 (platelet glycoprotein IIb-IIIa) helps define a ligand binding site. J Biol Chem 1992; 267: 3789-94.
  • 26 Lanza F, Stierle A, Founrnier D, Morales M, Andre G, Nurden AT, Cazenave J-P. A new variant of Glanzmann’s thrombasthenia (Strasbourg I): Platelets with functionally defective glycoprotein IIb-IIIa complexes and a glycoprotein IIIa 214Arg → 214Trp mutation. J Clin Invest 1992; 89: 1995-2004.
  • 27 Kamata T, Tieu KK, Springer TA, Takada Y. Amino acid residues in the α IIb subunit that are critical for ligand binding to integrin α IIb β3 are clustered in the β-propeller model. J Biol Chem 2001; 276 (04) 44275-83.
  • 28 Puzon-McLaughlin W, Kamata T, Takada Y. Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin αIIb β3 . J Biol Chem 2000; 275: 7795-802.
  • 29 Savage B, Shattil SJ, Ruggeri ZM. Modulation of platelet function through adhesion receptors: A dual role for glycoprotein IIb-IIIa (integrin αIIb β3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J Biol Chem 1992; 267: 11300-6.
  • 30 Humphries MJ. Integrin structure. Biochem Soc Trans 2000; 28: 311-40.
  • 31 Jackson DE, White MM, Jennings LK, Newman PJ. A Ser162 → Leu mutation within glycoprotein (GP) IIIa (integrin β3) results in an unstable αIIIb β3 complex that retains partial function in a novel form of type II Glanzmann thrombasthenia. Thromb Haemost 1998; 80: 42-8.
  • 32 Bergelson JM, Hemler ME. Integrin-ligand binding: Do integrins use a “MIDAS touch” to grasp an Asp?. Curr Biol 1995; 05: 615-7.
  • 33 Emsley J, Knight CG, Farndale RW, Barnes MJ, Liddington RC. Structural basis of collagen recognition by integrin α2 β1 . Cell 2000; 101: 47-56.
  • 34 Takagi J, Kamata T, Meredith J, Puzon-McLaughlin W, Takada Y. Changing ligand specificities of αVβ1 and αVβ3 integrins by swapping a short diverse sequence of the β subunit. J Biol Chem 1997; 272: 19794-800.
  • 35 Edwards CP, Champe M, Gonzalez T, Wessinger ME, Spencer SA, Presta LG, Berman PW, Bodary SC. Identification of amino acids in the CD11a I-domain important for binding of the leukocyte function-associated antigen-1 (LFA-1) to intercellular adhesion molecule-1 (ICAM-1). J Biol Chem 1995; 270: 12635-40.
  • 36 Kamata T, Wright R, Takada Y. Critical threonine and aspartic acid residues within the I domains of β2 integrins for interactions with intercellular adhesion molecule 1 (ICAM-1) and C3bi. J Biol Chem 1995; 270: 12531-5.
  • 37 Puzon-McLaughlin W, Takada Y. Critical residues for ligand binding in an I domain-like structure of the integrin β1 subunit. J Biol Chem 1996; 271: 20438-43.