Thromb Haemost 1999; 82(05): 1446-1450
DOI: 10.1055/s-0037-1614853
Rapid Communications
Schattauer GmbH

Mutations in von Willebrand Factor Multimerization Domains Are not a Common Cause of Classical Type 1 von Willebrand Disease

Stephen Keeney
1   From the University Department of Haematology, Manchester Royal Infirmary, Manchester, UK
,
Anthony Cumming
1   From the University Department of Haematology, Manchester Royal Infirmary, Manchester, UK
,
Charles Hay
1   From the University Department of Haematology, Manchester Royal Infirmary, Manchester, UK
› Author Affiliations
Further Information

Publication History

Received 16 March 1999

Accepted after revision 22 June 1999

Publication Date:
09 December 2017 (online)

Summary

Type 1 von Willebrand disease (vWD) is an autosomal dominant bleeding disorder of variable penetrance. It is characterised by a mild to moderate bleeding tendency and a quantitative deficiency of von Willebrand factor (vWF) with the full range of vWF multimers. Few mutations have been described which account for the mode of inheritance in dominant vWD type 1. We screened the vWF multimerization domains (regions D1-D3 of the vWF gene) of 12 unrelated patients with dominant vWD type 1 to investigate the hypothesis that multimerization of vWF sub-units may be inhibited or reduced by a “dominant negative” mechanism. Platelet-derived RNA was reverse transcribed and the resulting vWF cDNA amplified by the polymerase chain reaction (PCR) in a series of overlapping fragments. These were subjected to a combination of single-strand conformation polymorphism (SSCP) and heteroduplex analysis. This approach identified mobility shifts on acrylamide gels that represented 12 distinct SSCP and/or heteroduplex patterns in our patient group. DNA sequencing of the region encompassing each mobility shift showed these variants to represent previously described polymorphisms within the vWF coding sequence. Examination in all 12 patients for the previously described G3389T and T3445C mutations proved negative. The molecular pathology of classical type 1 vWD remains enigmatic, mutations having been identified in only a small minority of patients. A common mechanism underlying this disease state has still to be elucidated.

 
  • References

  • 1 Rodeghiero F, Castaman G, Dini E. Epidemiological investigation of the prevalence of von Willebrand’s disease. Blood 1987; 69: 454-59.
  • 2 Ruggeri ZM, Zimmerman TS. Von Willebrand factor and von Willebrand disease. Blood 1987; 70: 895-904.
  • 3 Sakariassen KS, Bolhuis PA, Sixma JJ. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII/von Willebrand factor bound to the subendothelium. Nature 1979; 279: 636-8.
  • 4 Sussman II, Rand JR. Subendothelial deposition of von Willebrand factor requires the presence of endothelial cells. J Lab Clin Med 1982; 100: 526-32.
  • 5 Nachman RL, Levine R, Jaffe EA. Synthesis of factor VIII antigen by cultured guinea pig megakaryocytes. J Clin Invest 1977; 60: 914-21.
  • 6 Sporn LA, Chavin SI, Marder VJ, Wagner DD. Biosynthesis of von Willebrand protein by human megakaryocytes. J Clin Invest 1985; 76: 1102-6.
  • 7 Ruggeri ZM, Zimmerman TS. The complex multimeric composition of factor VIII/von Willebrand factor. Blood 1981; 57: 1140-3.
  • 8 Girma J-P, Meyer D, Verweij CL, Pannekoek H, Sixma JJ. Structure-function relationship of human von-Willebrand factor. Blood 1987; 70: 605-11.
  • 9 Sadler JE. A revised classification of von Willebrand disease. Thromb Haemost 1994; 71: 520-5.
  • 10 Ginsburg D, Sadler JE. von Willebrand disease: a database of point mutations, insertions and deletions. Thromb Haemost 1993; 69: 177-84.
  • 11 Zhang ZP, Blombäck M, Egberg N, Falk G, Anvret M. Characterization of the von Willebrand factor gene (VWF) in von Willebrand disease type III patients from 24 families of Swedish and Finnish origin. Genomics 1994; 21: 188-93.
  • 12 Schneppenheim R, Krey S, Bergmann F, Bock D, Budde U, Lange M, Linde R, Mittler U, Meili E, Mertes G, Olek K, Plendl H, Simeoni E. Genetic heterogeneity of severe von Willebrand disease type III in the German population. Hum Genet 1994; 94: 640-52.
  • 13 Eikenboom JCJ, Castaman G, Vos HL, Bertina RM, Rodeghiero F. Characterization of the genetic defects in recessive type 1 and type 3 von Willebrand disease patients of Italian origin. Thromb Haemost 1998; 79: 709-17.
  • 14 Nichols WC, Lyons SE, Harrison JS, Cody RL, Ginsburg D. Severe von Willebrand disease due to a defect at the level of von Willebrand factor mRNA expression: Detection by exonic PCR-restriction fragment length polymorphism analysis. Proc Natl Acad Sci USA 1991; 88: 3857-61.
  • 15 Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature 1987; 229: 219-22.
  • 16 Verweij CL, Hart M, Pannekoek H. Expression of a variant von Willebrand factor vWF cDNA in heterologous cells: requirement of the pro-polypeptide in vWF mutimer assembly. EMBO J 1987; 6: 2885-90.
  • 17 Voorberg J, Fontijn R, van Mourik JA, Pannekoek H. Domains involved in multimer assembly of von Willebrand factor: multimerization is independent of dimerization. EMBO J 1990; 9: 797-803.
  • 18 Eikenboom JCJ, Matsushita T, Reitsma PH, Elodee AT, Castaman G, Briët E, Sadler JE. Dominant type 1 von Willebrand disease caused by mutated cysteine residues in the D3 domain of von Willebrand factor. Blood 1996; 88: 2433-41.
  • 19 Bodo I, Eikenboom JC, Dong Z, Sadler JE. (Abstract). Mechanism of a dominant negative von Willebrand factor mutation: The point mutation C386R results in dominant type 1 von Willebrand disease by causing retention of mutant-wild type heterodimers in the endoplasmic reticulum (ER). Blood 1998; 92 (Suppl. 01) 186a.
  • 20 Cumming AM, Wensley RT. Analysis of von Willebrand factor multimers using a commercially available enhanced chemiluminescence kit. J Clin Pathol 1993; 46: 470-3.
  • 21 Ploos van Amstel HK, Reitsma PH. Tetranucleotide repeat polymorphism in the vWF gene. Nucleic Acids Res 1990; 18: 4597.
  • 22 Shelton-Inloes BB, Broze Jr GJ, Miletich JP, Sadler JE. Evolution of human von Willebrand factor: cdNA sequence polymorphisms, repeated domains, and relationship to von Willebrand antigen II. Biochem Biophys Res Commun 1987; 144: 657-65.
  • 23 Mancuso DJ, Tuley EA, Westfield LA, Worrall NK, Shelton-Inloes BB, Sorace JM, Alevy YG, Sadler JE. Structure of the gene for human von Willebrand factor. J Biol Chem 1989; 264: 19514-27.
  • 24 Mancuso DJ, Tuley EA, Westfield LA, Lester-Mancuso TL, Lebeau MM, Sorace JM, Sadler JE. Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry 1991; 30: 253-69.
  • 25 Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987; 162: 156-9.
  • 26 Ravnic-Glavac M, Glavac D, Dean M. Sensitivity of single-strand conformation polymorphism (SSCP) and heteroduplex method (HA) for mutation detection in the cystic fibrosis gene. Hum Mol Gen 1994; 3: 801-7.
  • 27 Nishino K, Lynch DC. A polymorphism of the human von Willebrand factor (vWF) gene with Bam HI. Nucleic Acids Res 1986; 14: 4697.
  • 28 Sadler JE, Shelton-Inloes BB, Sorace JM, Harlan JM, Titani K, Davie EW. Cloning and characterization of two cDNAs coding for human von Willebrand factor. Proc Natl Acad Sci USA 1985; 82: 6394-8.
  • 29 Verweij CL, Diergaarde PJ, Hart M, Pannenkoek H. Full-length von Willebrand factor (vWF) cDNA encodes a highly repetitive protein considerably larger than the mature vWF subunit. EMBO J 1986; 5: 1839-47.
  • 30 Bonthron DR, Orr EC, Mitsock LM, Ginsburg D, Handin RI, Orkin SH. Nucleotide sequence of pre-pro-von Willebrand factor cDNA. Nucleic Acids Res 1987; 14: 7125-7.
  • 31 Sadler JE, Ginsburg D. A database of polymorphisms in the von Willebrand factor gene and psuedogene. Thromb Haemost 1993; 69: 185-91.
  • 32 VWF online database:. http://vwfdb.mmg2.im.med.umich.edu
  • 33 Lyons SE, Bruck ME, Bowie EJW, Ginsburg D. Impaired intracellular transport produced by a subset of type IIA von Willebrand disease mutations. J Biol Chem 1992; 267: 4424-30.
  • 34 White MB, Calvalho M, Derse D, O’Brien SJ, Dean M. Detecting single base substitutions as heteroduplex polymorphism. Genomics 1992; 12: 301-6.
  • 35 Hayashi K, Yandell DW. How sensitive is PCR-SSCP?. Hum Mut 1993; 2: 338-46.
  • 36 Nichols WC, Cooney KA, Mohlke KL, Ballew JD, Yang A, Bruck ME, Reddington M, Novak EK, Swank RT, Ginsburg D. Von Willebrand Disease in the RIIIS/J mouse is caused by a defect outside of the von Willebrand factor gene. Blood 1994; 83: 3225-31.
  • 37 Gill JC, Endres-Brooks J, Bauer PJ, Marks WJ, Montgomery RR. The effect of ABO blood group on the diagnosis of von Willebrand disease. Blood 1987; 69: 1691-5.
  • 38 Sodetz JM, Paulson JC, Pizzo SV, McKee PA. Carbohydrate on human factor VIII/von Willebrand factor: Impairment of function by removal of specific galactose residues. J Biol Chem 1978; 253: 7202-6.
  • 39 Samor B, Mazurier C, Goudemand M, Debeire P, Fournet B, Montreuil J. Preliminary results on the carbohydrate moiety of factor VIII/von Willebrand factor (FVIII/vWF). Thromb Res 1982; 25: 81-9.
  • 40 Sodetz JM, Paulson JC, Mckee PA. Carbohydrate composition and identification of blood group A, B and H oligosaccharide structures on human factor VIII/von Willebrand factor. J Biol Chem 1979; 254: 10754-60.
  • 41 Gralnick HR, Williams SB, Rick ME. Role of carbohydrate in multimeric structure of factor VIII/von Willebrand factor protein. Proc Natl Acad Sci USA 1983; 80: 2771-4.
  • 42 Federici AB, Elder JH, De-Marco L, Ruggeri ZM, Zimmerman TS. Carbohydrate moeity of von Willebrand factor is not necessary for maintaining multimeric structure and ristocetin cofactor activity but protects from proteolytic degredation. J Clin Invest 1984; 74: 2049-55.