Thromb Haemost 1998; 80(04): 546-550
DOI: 10.1055/s-0037-1615417
Rapid Communication
Schattauer GmbH

A Frameshift Mutation at Gly975 in the Transmembrane Domain of GPIIb Prevents GPIIb-IIIa Expression – Analysis of Two Novel Mutations in a Kindred with Type I Glanzmann Thrombasthenia

J. P. Scott III
1   From the Blood Research Institute, The Blood Center of Southeastern Wisconsin
,
J. P. Scott II
1   From the Blood Research Institute, The Blood Center of Southeastern Wisconsin
2   From the Children’s Hospital of Wisconsin
,
Y.-L. Chao
1   From the Blood Research Institute, The Blood Center of Southeastern Wisconsin
,
P. J. Newman
1   From the Blood Research Institute, The Blood Center of Southeastern Wisconsin
3   From the Departments of Cellular Biology and Pharmacology, Medical College of Wisconsin, Milwaukee, WI, USA
,
C. M. Ward
1   From the Blood Research Institute, The Blood Center of Southeastern Wisconsin
› Author Affiliations
Further Information

Publication History

Received 16 September 1997

Accepted after revision 01 July 1998

Publication Date:
08 December 2017 (online)

Summary

Two Hispanic siblings presenting with lifelong mucocutaneous bleeding were diagnosed clinically with Glanzmann thrombasthenia on the basis of a normal platelet count, prolonged bleeding time and absent platelet aggregation in response to multiple agonists. Quantitative analysis of the probands’ platelets by flow cytometry showed a complete absence of GPIIb-IIIa, consistent with Type I thrombasthenia. Genetic analysis showed the probands to be compound heterozygotes for two novel mutations of GPIIb: a C1414>G mutation in exon 14, resulting in a premature termination codon replacing residue Tyr440, and the insertion of a G at position 3016 in exon 29, leading to a frameshift affecting the C-terminal half of the transmembrane domain and the cytoplasmic tail. The frameshifted sequence alters residues from Gly975 onwards and is predicted to significantly alter the hydro-pathy and charge profiles of the GPIIb transmembrane domain. The Type I phenotype associated with this mutation suggests that GPIIb residues 975-1008 contain critical structural motifs for heterodimer assembly, membrane retention, export from the ER and surface expression.

 
  • References

  • 1 George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: the spectrum of clinical disease.. Blood 1990; 75: 1383-95.
  • 2 Newman PJ, Poncz M. Inherited disorders of platelets.. In: The metabolic and molecular bases of inherited disease.. CR Scriver, Beaudet AL, Sly WS, Valle D. (eds). New York:: McGraw-Hill; 1995: 3335-66.
  • 3 Bray PF. Inherited diseases of platelet glycoproteins: considerations for rapid molecular characterization.. Thromb Haemost 1994; 72: 492-502.
  • 4 French DL, Coller BS. Hematologically important mutations: Glanzmann thrombasthenia.. Blood Cells Mol Dis 1997; 23: 39-51.
  • 5 Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the Iraqi-Jewish and Arab populations in Israel.. Proc Natl Acad Sci USA 1991; 88: 3160-4.
  • 6 Basani RB, Vilaire G, Shattil SJ, Kolodziej MA, Bennett JS, Poncz M. Glanz-mann thrombasthenia due to a two amino acid deletion in the fourth calcium binding domain of αIIb: demonstration of the importance of calcium-binding domains in the conformation of αIIbβ3.. Blood 1996; 88: 167-73.
  • 7 French DL, Chen F-P, Xu L, Weiss HJ, Coller BS. Two unrelated doubly heterozygous patients with Glanzmann thrombasthenia have the same GPIIb mutation resulting in the loss of the transmembrane domain.. Thromb Haemost 1997; Suppl: 360.
  • 8 Kato A, Yamamoto K, Miyazaki S, Jung SM, Moroi M, Aoki N. Molecular basis for Glanzmann‘s thrombasthenia (GT) in a compound heterozygote with glycoprotein IIb gene: a proposal for the classification of GT based on the bio-synthetic pathway of glycoprotein IIb-IIIa complex.. Blood 1992; 79: 3212-8.
  • 9 Iwamoto S, Nishiumi E, Kaji E, Ikemoto S. An exon 28 mutation resulting in alternative splicing of the glycoprotein IIb transcript and Glanzmann’s thrombasthenia.. Blood 1994; 83: 1017-23.
  • 10 Vinciguerra C, Khelif A, Alemany M, Morle F, Grenier C, Uzan G, Gulino D, Dechavanne M, Negrier C. A nonsense mutation in the GPIIb heavy chain (Ser870>stop) impairs platelet GPIIb-IIIa expression.. Br J Haematol 1996; 95: 399-407.
  • 11 Poncz M, Rifat S, Coller BS, Newman PJ, Shattil SJ, Parrella T, Fortina P, Bennett JS. Glanzmann thrombasthenia secondary to a Gly23>Asp mutation adjacent to the first calcium-binding domain of platelet glycoprotein IIb.. J Clin Invest 1994; 93: 172-9.
  • 12 Wilcox DA, Wautier JL, Pidard DS, Newman PJ. A single amino acid substitution flanking the fourth calcium binding domain of αIIβ prevents maturation of the αIIbβ3 integrin complex.. J Biol Chem 1994; 269: 4450-7.
  • 13 Schlegel N, Gayet O, Morel-Kopp M-C, Wyler B, Hurtaud-Roux M-F, Kaplan C, McGregor J. The molecular genetic basis of Glanzmann‘s thrombasthenia in a Gypsy population in France: identification of a new mutation on the αIIβ gene.. Blood 1995; 86: 977-82.
  • 14 Duperray A, Troesch A, Berthier R, Chagnon E, Frachet P, Uzan G, Marguerie G. Biosynthesis and assembly of platelet GPIIb-IIIa in human megakaryocytes: evidence that assembly between pro-GPIIb and GPIIIa is a prerequisite for expression of the complex in the cell surface.. Blood 1989; 74: 1603-11.
  • 15 O’Toole TE, Loftus JC, Plow EF, Glass AA, Harper JR, Ginsberg MH. Efficient surface expression of platelet GPIIb-IIIa requires both subunits.. Blood 1989; 74: 14-8.
  • 16 Rosa J-P, McEver RP. Processing and assembly of the integrin, glyco-protein IIb-IIIa, in HEL cells.. J Biol Chem 1989; 264: 12596-603.
  • 17 Burk CD, Newman PJ, Lyman S, Gill J, Coller BS, Poncz M. A deletion in the gene for glycoprotein IIb associated with Glanzmann’s thrombasthenia.. J Clin Invest 1991; 87: 270-6.
  • 18 Li L, Bray PF. Homologous recombination among three intragene Alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia.. Am J Hum Genet 1993; 53: 140-9.
  • 19 Djaffer I, Caen JP, Rosa J-P. A large alteration in the human platelet glycoprotein IIIa (integrin β3) gene associated with Glanzmann’s thrombasthenia.. Human Mol Genet 1993; 2: 2183-5.
  • 20 Newman PJ, Allen RW, Kahn RA, Kunicki TJ. Quantitation of membrane glycoprotein IIIa on intact human platelets using the monoclonal antibody, AP-3.. Blood 1985; 65: 227-32.
  • 21 Pidard D, Montgomery RR, Bennett JS, Kunicki TJ. Interaction of AP-2, a monoclonal antibody specific for the human platelet glycoprotein IIb-IIIa complex, with intact platelets.. J Biol Chem 1983; 258: 12582-6.
  • 22 Coller BS, Seligsohn U, and Little PA. Type I Glanzmann thrombasthenia patients from the Iraqi-Jewish and Arab populations in Israel can be differentiated by platelet glycoprotein IIIa immunoblot analysis.. Blood 1987; 69: 1696-703.
  • 23 Springer TA. Folding of the N-terminal, ligand-binding region of integrin α-subunits into a β-propellor domain.. Proc Natl Acad Sci USA 1997; 94: 65-72.
  • 24 Gu J-M, Xu W-F, Wang X-D, Wu Q-Y, Chi C-W, Ruan C-G. Identification of a nonsense mutation at amino acid 584-Arginine of platelet glycoprotein IIb in patients with type I Glanzmann thrombasthenia.. Br J Haem 1993; 83: 442-9.
  • 25 Tomiyama Y, Kashigawi H, Kosugi S, Shiraga M, Kinoshita S, Kanayama Y, Kurata Y, Matsuzawa Y. Demonstration of a marked reduction in the amount of GPIIb in most Type II patients with Glanzmann’s thrombasthenia.. Br J Haem 1995; 87: 119-24.
  • 26 Vinciguerra C, Trzeciak MC, Phillipe N, Frappaz D, Reynaud J, Dechavanne M, Negrier C. Molecular study of Glanzmann thrombasthenia in 3 patients issued from 2 different families.. Thromb Haemost 1995; 74: 822-7.
  • 27 Schlegel N, Maisonneuve L, Binard S, Hurtaud-Roux MF, Gerard B, Elion J, Guesnu M, Gayet O, Macgregor J, Kaplan C. A C1157>T mutation in exon 12 of the glycoprotein (GP)IIb gene resonpsible for a severely truncated GPIIb in an african family with Glanzmann thrombasthenia.. Thrombosis Haemost 1997; Suppl: 360.
  • 28 Wilcox DA, Paddock CM, Lyman S, Gill JC, Newman PJ. Glanzmann thrombasthenia resulting from a single amino acid substitution between the second and third calcium-binding domains of GPIIb.. J Clin Invest 1995; 95: 1553-60.
  • 29 McKay BS, Annis DS, Honda S, Christie D, Kunicki TJ. Molecular requirements for assembly and function of a minimized human integrin αIIbβ3.. J Biol Chem 1996; 271: 30544-7.
  • 30 Kahn MJ, Kieber-Emmons T, Vilaire G, Murali R, Poncz M, Bennett JS. Effect of mutagenesis of GPIIb amino acid 273 on the expression and conformation of the platelet integrin GPIIb-IIIa.. Biochemistry 1996; 35: 14304-11.
  • 31 Loh E, Qi W, Vilaire G, Bennett JS. Effect of cytoplasmic domain mutations on the agonist-stimulated ligand binding activity of the platelet integrin αIIbβ3.. J Biol Chem 1996; 271: 30233-41.
  • 32 O’Toole TE, Katagiri Y, Faull RJ, Peter K, Tamura R, Quaranta V, Loftus JC, Shattil SJ, Ginsberg MH. Integrin cytoplasmic domains mediate inside-out signal transduction.. J Cell Biol 1994; 124: 1047-59.
  • 33 Kenny D, Newman PJ, Morateck PA, Montgomery RR. A dinucleotide deletion in glycoprotein Ibα results in defective membrane anchoring and circulating soluble glycoprotein Ibα in a novel form of Bernard Soulier syndrome.. Blood 1997; 90: 2626-33.
  • 34 Afsher-Khargan V, Lopez JA. Bernard-Soulier syndrome caused by a dinucleotide deletion and reading frameshift in the region encoding the glycoprotein Ibα transmembrane domain.. Blood 1997; 90: 2634-43.