Thromb Haemost 2001; 85(04): 716-723
DOI: 10.1055/s-0037-1615658
Review Articles
Schattauer GmbH

Evidence from Site-directed Mutagenesis that the Cytoplasmic Domain of the β3 Subunit Influences the Conformational State of the αvβ3 Integrin Ectodomain

Elisabeth Schaffner-Reckinger
1   Laboratoire Franco-Luxembourgeois de Recherche Biomédicale, CNRS - CRP-Santé, Centre Universitaire, Luxembourg, Grand-Duchy of Luxembourg
,
Nicolaas H. C. Brons
1   Laboratoire Franco-Luxembourgeois de Recherche Biomédicale, CNRS - CRP-Santé, Centre Universitaire, Luxembourg, Grand-Duchy of Luxembourg
,
Nelly Kieffer
› Author Affiliations
Further Information

Publication History

Received 16 August 2001

Accepted after revision 16 October 2000

Publication Date:
08 December 2017 (online)

Summary

In order to explore the mechanisms leading to conformational changes of the vitronectin receptor αvβ3 following ligand or divalent cation binding, we have investigated the expression of epitopes known as ligand-induced binding sites (LIBS) on 3 cytoplasmic tail mutants expressed in CHO cells. Truncation of the entire 3 cytoplasmic domain induced constitutive LIBS exposure on αvβ3 and IIb β3. Deletion of the C-terminal NITY759 sequence or disruption of the NPLY747 motif by a Y747A substitution impaired extracellular conformational changes on αvβ3 following RGDS, echistatin or Mn2+ binding, whereas the substitutions Y747F, Y759A or Y759F allowed normal LIBS exposure. Furthermore, metabolic energy depletion totally prevented Mn2+-dependent LIBS exposure, but had only a minor effect on RGDS-induced conformational changes. Our results demonstrate that the structural integrity of the NPLY747 motif in the β3 cytoplasmic domain, rather than potential phosphorylation of Tyr747 or Tyr759, is a prerequisite for conformational changes within the αvβ3 ectodo-main, and suggest that two different mechanisms are responsible for RGDS- and Mn2+-dependent conformational changes.

 
  • References

  • 1 Hynes RO. Integrins: versatility, modulation and signaling in cell adhesion. Cell 1992; 69: 11-25.
  • 2 Smyth SS, Joneckis CC, Parise LV. Regulation of vascular integrins. Blood 1993; 81: 2827-43.
  • 3 Shattil SJ. Signaling through platelet integrin αIIbβ3: inside-out, outside-in, and sideways. Thromb Haemost 1999; 82: 318-25.
  • 4 Meredith Jr JE, Fazeli B, Schwartz MA. The extracellular matrix as a cell survival factor. Mol Biol Cell 1993; 4: 953-61.
  • 5 Schwartz MA, Schaller MD, Ginsberg MH. Integrins: Emerging paradigms of signal transduction. Annu Rev Cell Dev Biol 1995; 11: 549-99.
  • 6 Gimond C, Sonnenberg A. Activation states of integrins. In: IntegrinLigand Interaction. Eble JA, Kühn K. eds. Austin, TX: R. G. Landes Company; 1997: 219-40.
  • 7 Pampori N, Hato T, Stupack DG, Aidoudi S, Cheresh DA, Nemerow GR, Shattil SJ. Mechanisms and consequences of affinity modulation of integrin αvβ3 detected with a novel patch-engineered monovalent ligand. J Biol Chem 1999; 274: 21609-16.
  • 8 Parise LV, Helgerson SL, Steiner B, Nannizzi L, Phillips DR. Synthetic peptides derived from fibrinogen and fibronectin change the conformation of purified platelet glycoprotein IIb-IIIa. J Biol Chem 1987; 262: 12597-602.
  • 9 Gailit J, Ruoslahti E. Regulation of the fibronectin receptor affinity by divalent cations. J Biol Chem 1988; 263: 12927-32.
  • 10 Arroyo AG, Garcia-Pardo A, Sanchez-Madrid F. A high affinity conformational state on VLA integrin heterodimers induced by an anti- 1 chain monoclonal antibody. J Biol Chem 1993; 268: 9863-8.
  • 11 Hantgan RR, Paumi C, Rocco M, Weisel JW. Effects of ligand-mimetic peptides Arg-Gly-Asp-X (X = Phe, Trp, Ser) on αIIbβ3 integrin conformation and oligomerization. Biochemistry 1999; 38: 14461-74.
  • 12 Frelinger III AL, Lam SC-T, Plow EF, Smith MA, Loftus JC, Ginsberg MH. Occupancy of an adhesive glycoprotein receptor modulates expression of an antigenic site involved in cell adhesion. J Biol Chem 1988; 263: 12397-402.
  • 13 Leisner TM, Wencel-Drake JD, Wang W, Lam SC-T. Bidirectional trans-membrane modulation of integrin αIIbβ3 conformations. J Biol Chem 1999; 274: 12945-9.
  • 14 Schaffner-Reckinger E, Gouon V, Melchior C, Plançon S, Kieffer N. Distinct involvement of β3 integrin cytoplasmic domain tyrosine residues 747 and 759 in integrin-mediated cytoskeletal assembly and phosphotyro-sine signaling. J Biol Chem 1998; 273: 12623-32.
  • 15 Lyman S, Gilmore A, Burridge K, Gidwitz S, White GC. Integrin-mediated activation of focal adhesion kinase is independent of focal adhesion formation or integrin activation – Studies with activated and inhibitory β3 cytoplasmic domain mutants. J Biol Chem 1997; 272: 22538-47.
  • 16 Honda S, Tomiyama Y, Pelletier AJ, Annis D, Honda Y, Orchekowski R, Ruggeri Z, Kunicki TJ. Topography of ligand-induced binding sites, including a novel cation sensitive epitope (AP5) at the amino terminus of the human integrin β3 subunit. J Biol Chem 1995; 270: 11947-54.
  • 17 Kouns WC, Wall CD, White MM, Fox CF, Jennings LK. A conformation-dependent epitope of human platelet glycoprotein IIIa. J Biol Chem 1990; 265: 20594-601.
  • 18 Frelinger III AL, Cohen I, Plow EF, Smith MA, Roberts J, Lam SC-T, Ginsberg MH. Selective inhibition of integrin function by antibodies specific for ligand-occupied receptor conformers. J Biol Chem 1990; 265: 6346-52.
  • 19 Hughes PE, O’Toole TE, Ylänne J, Shattil SJ, Ginsberg MH. The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J Biol Chem 1995; 270: 12411-17.
  • 20 Hughes PE, Diaz-Gonzalez F, Leong L, Wu CY, McDonald JA, Shattil SJ, Ginsberg MH. Breaking the integrin hinge – A defined structural constraint regulates integrin signaling. J Biol Chem 1996; 271: 6571-4.
  • 21 Deckmyn H, Stanssens P, Hoet B, Declerck PJ, Lauwereys M, Gansemans Y, Tornai I, Vermylen J. An echistatin-like Arg-Gly-Asp (RGD)-containing sequence in the heavy chain CDR3 of a murine monoclonal antibody that inhibits human platelet glycoprotein IIb/IIIa function. Br J Haematol 1994; 87: 562-71.
  • 22 Pfaff M, McLane MA, Beviglia L, Niewiarowski S, Timpl R. Comparison of disintegrins with limited variation in the RGD loop in their binding to purified integrins αIIbβ3, αvβ3 and α5β1 and in cell adhesion inhibition. Cell Adhes Commun 1994; 2: 491-501.
  • 23 Spector I, Shochet NR. Latrunculins: novel marine toxins that disrupt microfilament organization in cultured cells. Science 1983; 219: 493-5.
  • 24 Shattil SJ, Kashiwagi H, Pampori N. Integrin signaling: the platelet paradigm. Blood 1998; 91: 2645-57.
  • 25 Pelletier AJ, Kunicki T, Quaranta V. Activation of the integrin αvβ3 involves a discrete cation-binding site that regulates conformation. J Biol Chem 1996; 271: 1364-70.
  • 26 Puzon-McLaughlin W, Yednock TA, Takada Y. Regulation of conformation and ligand binding function of integrin α5β1 by the β1 cytoplasmic domain. J Biol Chem 1996; 271: 16580-5.
  • 27 Crommie D, Hemler ME. 1 integrin cytoplasmic domain regulates the constitutive conformation detected by MAb 15/7, but not the ligand-induced conformation. J Cell Biochem 1998; 71: 63-73.
  • 28 Wennerberg K, Fassler R, Warmegard B, Johansson S. Mutational analysis of the potential phosphorylation sites in the cytoplasmic domain of integrin β1A – Requirement for threonines 788-789 in receptor activation. J Cell Sci 1998; 111: 1117-26.
  • 29 Sakai T, Zhang QH, Fassler R, Mosher DF. Modulation of 1A integrin functions by tyrosine residues in the 1 cytoplasmic domain. J Cell Biol 1998; 141: 527-38.
  • 30 Mastrangelo AM, Homan SM, Humphries MJ, LaFlamme SE. Amino acid motifs required for isolatedcytoplasmic domains to regulate ‘in trans’ 1 integrin conformation and function in cell attachment. J Cell Sci 1999; 112: 217-29.
  • 31 van Kooyk Y, van Vliet SJ, Figdor CG. The actin cytoskeleton regulates LFA-1 ligand binding through avidity rather than affinity changes. J Biol Chem 1999; 274: 26869-77.
  • 32 O’Toole TE, Ylänne J, Culley BM. Regulation of integrin affinity states through an NPXY motif in thesubunit cytoplasmic domain. J Biol Chem 1995; 270: 8553-8.
  • 33 Hughes PE, Renshaw MW, Pfaff M, Forsyth J, Keivens VM, Schwartz MA, Ginsberg MH. Suppression of integrin activation: A novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 1997; 88: 521-30.
  • 34 Blystone SD, Williams MP, Slater SE, Brown EJ. Requirement of integrin 3β tyrosine 747 for β3 tyrosine phosphorylation and regulation of αvβ3 avidity. J Biol Chem 1997; 272: 28757-61.
  • 35 Davis GE, Camarillo CW. Regulation of integrin-mediated myeloid cell adhesion to fibronectin. J Immunol 1993; 151: 7138-50.
  • 36 Smith JW, Piotrowicz RS, Mathis D. A mechanism for divalent cation regulation of β3-integrins. J Biol Chem 1994; 269: 960-7.
  • 37 Du X, Plow EF, Frelinger III AL, O’Toole TE, Loftus JC, Ginsberg MH. Ligands “activate” integrin αIIbβ3 (platelet GPIIb-IIIa). Cell 1991; 65: 409-16.
  • 38 Berkowitz SD, Harrington RA, Rund MM, Tcheng JE. Acute profound thrombocytopenia after c7E3 Fab (Abciximab) therapy. Circulation 1997; 95: 809-13.
  • 39 Bednar B, Cook JJ, Holahan MA, Cunningham ME, Jumes PA, Bednar RA, Hartman GD, Gould RJ. Fibrinogen receptor antagonist-induced thrombocytopenia in chimpanzee and rhesus monkey associated with preexisting drug-dependent antibodies to platelet glycoprotein IIb/IIIa. Blood 1999; 94: 587-99.
  • 40 Fitzgerald LA, Steiner B, Rall SCJ, Lo S, Phillips DR. Protein sequence of endothelial glycoprotein IIIa derived from a cDNA clone. J Biol Chem 1987; 262: 3936-9.