Thromb Haemost 2001; 86(01): 14-22
DOI: 10.1055/s-0037-1616196
Research Article
Schattauer GmbH

The Conformational Basis of Thrombosis

Carrell W. Robin
1   Department of Haematology, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge, UK
,
James A. Huntington
1   Department of Haematology, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge, UK
,
Alec Mushunje
1   Department of Haematology, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge, UK
,
Aiwu Zhou
1   Department of Haematology, University of Cambridge, Wellcome Trust Centre for Molecular Mechanisms in Disease, Cambridge, UK
› Author Affiliations
Further Information

Publication History

Publication Date:
12 December 2017 (online)

Summary

Antithrombin readily undergoes a spontaneous transition from its active five-stranded form to a six-stranded inactive latent form. The recognition of this change in plasma has been obscured by the immediate linkage of newly formed latent antithrombin to a molecule of active antithrombin to give a dimer with an electrophoretic mobility readily confused with that of native active antithrombin. A new micromethod now allows unequivocal identification of latent antithrombin in whole plasma. This shows that at 37° C some 10% of plasma antithrombin is converted to the latent form in 24 h. The rate of conversion is greatly accelerated at increased temperatures, as occurs in the pasteurisation of plasma concentrates that should now be checked for efficacy. But increased transition also occurs in the plasma at the slightly increased temperatures that accompany incidental infections. This is of particular significance if there is a conformationally unstable variant of antithrombin; here fever can provoke a sudden transition with the onset of a characteristically severe episode of thromboembolism. Such variants are not rare and include those previously classified as pleiotropic. The precise structural pathway, now known with antithrombin, provides a model of the changes occurring in other conformational diseases, including Alzheimer’s and the prion dementias.

 
  • References

  • 1 Prusiner SB. Prion diseases and the BSE crisis. Science 1997; 278: 245-51.
  • 2 Carrell RW, Lomas DA. Conformational Diseases. Lancet 1997; 350: 134-8.
  • 3 Carrell RW, Gooptu B. Conformational changes and disease – including Serpins, Prions and Alzheimer‘s. Current Opinion in Structural Biology 1998; 8: 799-809.
  • 4 Potempa J, Korzus E, Travis J. The serpin family of proteinase inhibitors: structure function and regulation. J Biol Chem 1994; 269: 15957-60.
  • 5 Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407: 923-6.
  • 6 Laurell CB, Eriksson S. The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 1963; 15: 132-40.
  • 7 Lomas DA, Evans DL, Finch JT, Carrell RW. Molecular mechanism of Z α1-antitrypsin accumulation in the liver. Nature 1992; 357: 605-7.
  • 8 Davis RL, Shrimpton AE, Holohan PD, Bradshaw C, Feiglin D, Collins GH. et al. Familial dementia caused by polymerisation of mutant neuroserpin. Nature 1999; 401: 376-9.
  • 9 Loebermann H, Tokuoka R, Deisenhofer J, Huber R. Human α1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol 1984; 177: 531-56.
  • 10 Carrell RW, Owen MC. Plakalbumin, α1-antitrypsin, antithrombin and the mechanism of inflammatory thrombosis. Nature 1985; 317: 730-2.
  • 11 Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis. Nature 1991; 353: 576-8.
  • 12 Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985; 260: 11581-7.
  • 13 Lomas DA, Elliot PR, Chang WS, Wardell WS, Carrell RW. Preparation and characterisation of latent α1-antitrypsin. J Biol Chem 1995; 270: 5282-8.
  • 14 Chang WSW, Lomas DA. Latent α1-Antichymotrypsin. A molecular explanation for the inactivation of α1-antichymotrypsin in chronic bronchitis and emphysema. J Biol Chem 1997; 273: 3695-701.
  • 15 Mottonen J, Strand A, Symersky J, Sweet RM, Danlet DE, Geoghegan KF. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 1992; 355: 270-3.
  • 16 Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, Carrell RW. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA 1997; 94: 14683-8.
  • 17 Skinner R, Chang WS, Jin L, Pei X, Huntington JA, Abrahams JP. et al. Implications for function and therapy of a 2.9Å structure of binary-complexed antithrombin. J Mol Biol 1998; 283: 9-14.
  • 18 Huntington JA, Pabbu NS, Hazes B, Read RJ, Lomas DA, Carrell RW. A 2.6Å Structure of a serpin polymer and implications for conformational disease. J Mol Biol 1999; 293: 449-55.
  • 19 Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis (correction). Nature 1993; 364: 737.
  • 20 Wardell MR, Chang WS, Bruce D, Skinner R, Lesk AM, Carrell RW. Preparative induction and characterization of L-antithrombin: a structural homologue of latent plasminogen activator inhibitor-1. Biochemistry 1997; 36: 13133-42.
  • 21 Bruce D. Thromboembolic disease due to thermolabile conformational changes of antithrombin Rouen VI (187 Asn→Asp). J Clin Invest 1994; 94: 2265-74.
  • 22 Chang WS, Harper PL. Commercial antithrombin concentrate contains inactive L-forms of antithrombin. Thromb Haemost 1997; 77: 323-8.
  • 23 Wardell MR, Abrahams JP, Bruce D, Skinner R, Leslie AG. Crystallization and preliminary X-ray diffraction analysis of two conformations of intact human antithrombin. J Mol Biol 1993; 234: 1253-8.
  • 24 Carrell RW, Stein PE, Fermi G, Wardell MR. Biological implications of a 3Å structure of dimeric antithrombin. Structure 1994; 2: 257-70.
  • 25 Schreuder HA, de Boer B, Dijkema R, Mulders J, Theunissen HJ, Grootenhuis PD. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature Struct Biol 1994; 1: 48-54.
  • 26 O’Reilly MS, Pirie-Shepherd S, Lane WS, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 1999; 285: 1926-8.
  • 27 Larsson H, Sjoblom T, Dixelius J, Ostman A, Ylinenjarvi K, Bjork I. et al. Antiangiogenic effects of latent antithrombin through perturbed cell-matrix interactions and apoptosis of endothelial cells. Cancer Res 2000; 60: 6723-9.
  • 28 Zhou A, Huntington JA, Carrell RW. Formation of the antithrombin heterodimer and the onset of thrombosis. Blood 1999; 94: 3388-96.
  • 29 Mahadeva R, Chang WS, Dafforn TR, Oakley DJ, Foreman RC, Calvin J. et al. Heteropolymerization of S, I, and Z alpha1 antitrypsin and liver cirrhosis. J Clin Invest 1999; 103: 999-1006.
  • 30 Stein PE, Carrell RW. What do dysfunctional serpins tell us about molecular mobility and disease?. Nature Struct Biol 1995; 2: 96-113.
  • 31 Emmerich J, Chadeuf G, Coetzee MJ, Alhenc-Gelas M, Fiessinger JN, Aiach M. A phenylalanine 402 to leucine mutation is responsible for a stable inactive conformation of antithrombin. Thromb Res 1994; 76: 307-15.
  • 32 Beauchamp NJ, Pike RN, Daly M, Butler L, Makris M, Dafforn TR. et al. Antithrombins Wibble and Wobble (T85M/K): Archetypal conformational disease with in vivo latent-transition, thrombosis and heparin activation. Blood 1998; 92: 2696-706.
  • 33 Lane DA, Bayston T, Olds RJ, Fitches AC, Cooper DN, Millar DS. et al. Antithrombin mutation database: 2nd (1997) update. For the plasma coagulation inhibitors subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost 1997; 77: 197-211.
  • 34 Peterson CB, Blackburn MN. Isolation and characterisation of an antithrombin III variant with reduced carbohydrate content and enhanced affinity for heparin. J Biol Chem 1985; 260: 610-5.
  • 35 Turk B, Brieditis I, Bock SC, Olson ST, Bjork I. The oligosaccharide sidechain on Asn-135 of α-antithrombin, absent in β-antithrombin, decreases the heparin affinity of the inhibitor by affecting the heparin-induced conformational change. Biochemistry 1997; 36: 6682-91.
  • 36 Fribelius S, Isaksson S, Swedenberg J. Thrombin inhibition by antithrombin on the subendothelium is explained by the isoform ATβ. Arteroscler Thromb Vasc Biol 1996; 16: 1292-7.
  • 37 Martinez C, Corral J, Gonzalez-Conejero R, Giraldo R, Zuazu-Jausoro I, Navarro M. et al. New conformational mutation PRO80SER in the antithrombin III. Clinical effect in an extended family including 13 carriers. Abstract to be found on the CD-ROM of the XVIIIth ISTH Meeting, Paris 2001.
  • 38 Corral J, Aznar J, Gonzalez-Conejero R, Villa P, Martinez C, Vaya A. et al. Molecular characterization of the first homozygous heparin cofactor II deficiency. Involvement in conformational disease. Abstract to be found on the CD-ROM of the XVIIIth ISTH Meeting, Paris 2001.
  • 39 Jochmans K, Lissens W, Seneca S, Capel P, Chatelain B, Meeus P. et al. The molecular basis of antithrombin deficiency in Belgian and Dutch families. Thromb Haemost 1998; 80: 376-81.
  • 40 Mushunje A, Evans G, Zhou A, Carrell R. Micromethod identifies latent antithrombin in normal plasma and shows pleiotropic changes are due to conformational instability. Abstract to be found on the CD-ROM of the XVIIIth ISTH Meeting, Paris 2001.