Subscribe to RSS
DOI: 10.1055/s-0037-1616468
Pathophysiologie der Entzündung
Pathophysiology of inflammationPublication History
received:
28 November 2015
accepted:
30 November 2015
Publication Date:
10 January 2018 (online)
![](https://www.thieme-connect.de/media/10.1055-s-00034924/201601/lookinside/thumbnails/10-1055-s-0037-1616468_de-1.jpg)
Zusammenfassung
Entzündung ist das Resultat einer Aktivierung des Immunsystems aus unterschiedlichen Ursachen. Das Immunsystem ist ein hochkomplexes, evolutionär optimiertes Verteidigungssystem aus zellulären und humoralen Komponenten. Die Immunsituation des Wirtes, die Art und Virulenz des entzündlichen Agens und die (teilweise genetisch determinierte) Feinjustierung der Entzündungsreaktion entscheiden über den Ausgang einer Entzündungsreaktion. Probleme entstehen u. a. durch entzündungsbedingte Gewebedefekte (z.B. Fibrose) sowie durch ungenügende (Immundefizienz) oder überschießende Immunantworten (Autoimmunität). Das dynamische Gleichgewicht zwischen Immundefizienz und Autoimmunität wird durch stringente Selektionsmechanismen in Knochenmark und Thymus und durch Kontrollmechanismen (Checkpoints) in den peripheren lymphatischen Geweben sichergestellt. Viele Tumoren haben Eigenschaften, die zu einer Immunsuppression in ihrem Mikromilieu führen und umgehen dadurch ihre Zerstörung durch das Immunsystem.
In den vergangenen Jahren ist es gelungen, diese lokale Immunsuppression durch den Tumor teilweise zu durchbrechen. Erste klinische Studien haben sehr ermutigende Indizien dafür geliefert, dass die Nutzung des Immunsystems für therapeutische Zwecke eine sehr effektive Waffe bei der Bekämpfung von Tumorerkrankungen sein kann.
Summary
Inflammation results from activation of the immune system in response to a broad range of different stimuli. The immune system is a highly complex and evolutionary optimized defense system with cellular and humoral components. The course of an inflammatory response is influenced by the immune condition of the host, the virulence e. g. of an infectious agent, and the fine tuning of the local tissue reaction, which may be influenced by individual genetic factors. Immunity is a compromise between insufficient (immunodeficiency) or exaggerated (auto-immunity) immune reactions. The dynamic balance between these two extremes is achieved through stringent T- and B-cell selection in the bone marrow and thymus on the one hand and through „checkpoint control” in peripheral lymphatic tissues. Many tumors have ways to suppress local immune responses and to escape destruction through the immune system (one of the so-called „hallmarks of cancer”).
In recent years, different approaches have successfully been able to reverse this local immunosuppression. First clinical trials using these strategies have shown highly promising results indicating that the therapeutic use of the immune system will be a very effective instrument in the arsenal of cancer treatment agents.
-
Literatur
- 1 Anguille S, Smits EL, Bryant C. et al. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67: 731-753.
- 2 Blanck G. Mutations and regulatory anomalies effecting tumor cell immune functions. Cancer Immunol Immunother 2004; 53: 1-16.
- 3 Boehm T. Co-evolution of a primordial peptide-presentation system and cellular immunity. Nat Rev Immunol 2006; 6: 79-84.
- 4 Boehm T. Quality control in self/nonself discrimination. Cell 2006; 125: 845-858.
- 5 Boehm T. Thymus development and function. Curr Opin Immunol 2008; 20: 178-184.
- 6 Boehm T, Bleul CC. The evolutionary history of lymphoid organs. Nat Immunol 2007; 8: 131-135.
- 7 Borghaei H, Paz-Ares L, Horn L. et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med 2015; 373: 1627-1639.
- 8 Brack C, Hirama M, Lenhard-Schuller R. et al. A complete immunoglobulin gene is created by somatic recombination. Cell 1978; 15: 1-14.
- 9 Ceeraz S, Nowak EC, Noelle RJ. B7 family checkpoint regulators in immune regulation and disease. Trends Immunol 2013; 34: 556-563.
- 10 Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nature immunology 2003; 4: 330-336.
- 11 Gardner D, Jeffery LE, Sansom DM. Understanding the CD28/CTLA-4 (CD152) pathway and its implications for costimulatory blockade. Am J Transplant 2014; 14: 1985-1991.
- 12 George J, Claflin L. Selection of B cell clones and memory B cells. Semin Immunol 1992; 4: 11-17.
- 13 Hannibal MC, Torgerson T. IPEX Syndrome. In: GeneReviews(R); Pagon RA, Adam MP, Ardinger HH. et al. (eds). Seattle (WA): 1993
- 14 Hazenberg MD, Spits H. Human innate lymphoid cells. Blood 2014; 124: 700-709.
- 15 Hirose M, Hosoi E, Hamano S. et al. Multidrug resistance in hematological malignancy. J Med Invest 2003; 50: 126-135.
- 16 Hodi FS, O’Day SJ, McDermott DF. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363: 711-723.
- 17 Lemaitre B, Nicolas E, Michaut L. et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86: 973-983.
- 18 Li Z, Woo CJ, Iglesias-Ussel MD. et al. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev 2004; 18: 1-11.
- 19 Liu J, Cao X. Regulatory dendritic cells in autoimmunity: A comprehensive review. J Autoimmun 2015; 63: 1-12.
- 20 Lob S, Konigsrainer A, Zieker D. et al. IDO1 and IDO2 are expressed in human tumors: levobut not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother 2009; 58: 153-157.
- 21 Medzhitov R, Preston-Hurlburt P, Janeway Jr. CA. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388: 394-397.
- 22 Melchers F. Checkpoints that control B cell development. J Clin Invest 2015; 125: 2203-2210.
- 23 Merle NS, Church SE, Fremeaux-Bacchi V. et al. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6: 262.
- 24 Merle NS, Noe R, Halbwachs-Mecarelli L. et al. Complement System Part II: Role in Immunity. Front Immunol 2015; 6: 257.
- 25 Peron JP, de Oliveira AP, Rizzo LV. It takes guts for tolerance: the phenomenon of oral tolerance and the regulation of autoimmune response. Autoimmun Rev 2009; 9: 1-4.
- 26 Powles T, Eder JP, Fine GD. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014; 515: 558-562.
- 27 Qian F, Villella J, Wallace PK. et al. Efficacy of levo-1-methyl tryptophan and dextro-1-methyl tryptophan in reversing indoleamine-2,3-dioxygenase-mediated arrest of T-cell proliferation in human epithelial ovarian cancer. Cancer Res 2009; 69: 5498-5504.
- 28 Ribas A, Puzanov I, Dummer R. et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 2015; 16: 908-918.
- 29 Robert C, Ribas A, Wolchok JD. et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384: 1109-1117.
- 30 Robert C, Thomas L, Bondarenko I. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364: 2517-2526.
- 31 Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 2000; 101: 455-458.
- 32 Shin H, Iwasaki A. Tissue-resident memory T cells. Immunol Rev 2013; 255: 165-181.
- 33 Sica A, Erreni M, Allavena P. et al. Macrophage polarization in pathology. Cell Mol Life Sci 2015; 72: 4111-4126.
- 34 Sompayrac L. How the Immune System works. Oxford: 2015
- 35 Terme M, Ullrich E, Aymeric L. et al. IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res 2011; 71: 5393-5399.
- 36 Tirapu I, Huarte E, Guiducci C. et al. Low surface expression of B7-1 (CD80) is an immunoescape mechanism of colon carcinoma. Cancer Res 2006; 66: 2442-2450.
- 37 Velu V, Titanji K, Zhu B. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 2009; 458: 206-210.
- 38 Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol 2008; 8: 467-477.