Arthritis und Rheuma 2011; 31(03): 160-166
DOI: 10.1055/s-0037-1618065
Trauma und Unfallchirurgie
Schattauer GmbH

Rekonstruktion traumatischer Gelenkflächendefekte

Reconstruction of traumatic joint surface defects
M. Jagodzinski
1   Unfallchirurgische Klinik, Medizinische Hochschule Hannover (MHH)
,
C. Haasper
1   Unfallchirurgische Klinik, Medizinische Hochschule Hannover (MHH)
,
M. Petri
1   Unfallchirurgische Klinik, Medizinische Hochschule Hannover (MHH)
,
D. Günther
1   Unfallchirurgische Klinik, Medizinische Hochschule Hannover (MHH)
,
K. Gratz
2   Klinik für Nuklearmedizin, Medizinische Hochschule Hannover (MHH)
,
Ch. Krettek
1   Unfallchirurgische Klinik, Medizinische Hochschule Hannover (MHH)
› Author Affiliations
Further Information

Publication History

Publication Date:
21 December 2017 (online)

Zusammenfassung

Traumatische Gelenkflächendefekte entstehen durch Trauma, Tumor, entzündliche oder degenerative Gelenkerkrankungen und nach der Explantation orthopädischer Implantate. Die Defektdeckung kann bei fehlender Kontraindikation durch autologen oder allogenen Knochen, osteochondrale Transplantate oder vaskularisierte Implantate erfolgen. Eine neue Therapieoption ist bei ausgedehnten Defekten die Implantation maßgefertigter Hybridimplantate aus autologem Knochen und in vitro kultivierten Knorpelzellen. Dieser Artikel gibt einen Überblick über die Pathogenese und die Vor- und Nachteile der verschiedenen Therapieoptionen.

Summary

Traumatic joint surface defects are a result of trauma, tumour, inflammatory or degenerative joint desease. They occur after explantation of orthopaedic implants. If contraindications are ruled out, defect coverage can be accomplished by the implantation of autologeous or allogeneic bone, osteochondral or vascularized implants. A novel therapy represents the implantation of custom made hybrid implants out of autologeous bone and in-vitro cultivated cartilage cells. This article provides an overview of the state of the art with the advantages and disadvantages of the various therapeutic options.

 
  • Literatur

  • 1 Hunter W. On the structure and diseases of articulating cartilages. Trans R Soc Lond 1743 42B: 514-521.
  • 2 Gomoll AH, Madry H, Knutsen G. et al. The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 2010; 18 (04) 434-447.
  • 3 Brittberg M. Autologous chondrocyte implantation--technique and long-term follow-up. Injury 2008; 39 (Suppl. 01) S40-S49.
  • 4 Steadman JR, Briggs KK, Rodrigo JJ. et al. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy 2003; 19 (05) 477-484.
  • 5 Imhoff AB, Paul J, Ottinger B. et al. Osteochondral Transplantation of the Talus: Long-Term Clinical and Magnetic Resonance Imaging Evaluation. The American Journal of Sports Medicine. 2011 March 3. [Epub ahead of print]
  • 6 Frosch KH, Voss M, Walde T. et al. Entnahme osteochondraler Zylinder aus der medialen dorsalen Femurkondyle über einen minimalinvasiven Zugang. Operative Orthopadie und Traumatologie 2010; 22 (02) 212-220.
  • 7 Zengerink M, Struijs PA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc 2010; 18 (02) 238-246.
  • 8 Williams III RJ, Brophy RH. Cartilage repair procedures: clinical approach and decision making. Instr Course Lect 2008; 57: 553-561.
  • 9 Niederauer GG, Slivka MA, Leatherbury NC. et al. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials 2000; 21 (24) 2561-2574.
  • 10 Jiang CC, Chiang H, Liao CJ. et al. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. Journal of Orthopaedic Research 2007; 25 (10) 1277-1290.
  • 11 Mithoefer K, McAdams TR, Scopp JM, Mandelbaum BR. Emerging options for treatment of articular cartilage injury in the athlete. Clinics in Sports Medicine 2009; 28 (01) 25-40.
  • 12 Schlichting K, Schell H, Kleemann RU. et al. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing. The American Journal of Sports Medicine 2008; 36 (12) 2379-2391.
  • 13 Muscolo DL, Ayerza MA, Aponte Tinao LA, Ranalletta M. Distal femur osteoarticular allograft reconstruction after grade III open fractures in pediatric patients. J Orthop Trauma 2004; 18 (05) 312-315.
  • 14 Muscolo DL, Ayerza MA, Aponte-Tinao LA. Massive allograft use in orthopedic oncology. Orthop Clin North Am 2006; 37 (01) 65-74.
  • 15 Bakay A, Csoenge L, Papp G, Fekete L. Osteochondral resurfacing of the knee joint with allograft. Int Orthopaedics 1998; 22: 277-281.
  • 16 Aho AJ, Ekfors T, Dean PB. et al. Incorporation and clinical results of large allografts of the extremities and pelvis. Clin Orthop Relat Res 1994; 307: 200-13.
  • 17 Rueger JM. Knochenersatzmittel – Heutiger Stand und Ausblick. Orthopäde 1998; 27 (02) 72-79.
  • 18 Gotterbarm T, Breusch SJ, Schneider U, Jung M. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab Anim 2008; 42 (01) 71-82.
  • 19 Benthien JP, Behrens P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg Sports Traumatol Arthrosc. 2011 Jan 14. [Epub ahead of print]
  • 20 Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair: a review of the matrix-induced autologous chondrocyte implantation procedure. The American Journal of Sports Medicine 2010; 38 (06) 1259-1271.
  • 21 Schell H, Lienau J, Kleemann RU. et al. Crushed bone grafts and a collagen membrane are not suitable for enhancing cartilage quality in the regeneration of osteochondral defects – an in vivo study in sheep. Journal of Biomechanics 2007; 40 (Suppl. 01) S64-S72.
  • 22 Saris DB, Vanlauwe J, Victor J. et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36 (02) 235-246.
  • 23 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89 (10) 2105-2112.
  • 24 Saris DB, Vanlauwe J, Victor J. et al. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. The American Journal of Sports Medicine 2009; 37 (Suppl. 01) S10-S19.
  • 25 Basad E, Ishaque B, Bachmann G. et al. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 2010; 18 (04) 519-527.
  • 26 Van Assche D, Staes F, Van Caspel D. et al. Autologous chondrocyte implantation versus micro-fracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg Sports Traumatol Arthrosc 2010; 18 (04) 486-495.
  • 27 Knutsen G, Engebretsen L, Ludvigsen TC. et al. Autologous chondrocyte implantation compared with microfracture in the knee. A randomized trial. J Bone Joint Surg Am 2004; 86-A (03) 455-464.