Hamostaseologie 2000; 20(03): 136-142
DOI: 10.1055/s-0037-1619481
Original article
Schattauer GmbH

Rationale for heparin treatment of colon cancer

Grundlage einer Therapie des Kolonkarzinoms mit Heparin
L. R. Zacharski
1   VA Medical & Regional Office Center, White River Junction, Vermont and Dartmouth Medical School, Hanover, New Hampshire, USA
,
D. L. Ornstein
2   Dartmouth Medical School, Hanover, New Hampshire, current address: Wilford Hall Medical Center, Lackland Air Force Base, San Antonio, Texas, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Summary

It is widely known that the systemic blood coagulation mechanism is often activated in malignancy, leading to an increased incidence of vascular thromboses in patients with cancer. It is not widely appreciated, however, that products of the coagulation mechanism may also support tumor growth and dissemination. Interest in this approach to cancer therapy has surged recently because of mounting evidence that the familiar anticoagulant drug, heparin, may impede tumor progression. Heparin has the capacity to modify angiogenesis, growth factor and protease activity, immune function, cell proliferation and gene expression in ways that may block malignant dissemination. Clinical trials in which heparin has been administered to a broad spectrum of patients to prevent or treat thrombosis have unexpectedly shown improvement in survival in the subset of patients with malignancy entered to these studies. Meta-analyses of clinical trials comparing unfractionated (UF) versus low molecular weight (LMW) heparin treating venous thromboembolism suggest that there may be substantial improvement in cancer outcome in patients with malignancy randomized to receive LMW heparin. These findings provide a rationale for definitive clinical trials of LMW heparin in cancer, and the results of several such studies that are currently underway are awaited with interest.

Zusammenfassung

Man weiß, dass maligne Erkrankungen häufig mit einer Aktivierung der systemischen Blutgerinnung einhergehen, was bei Krebspatienten zu einer erhöhten Inzidenz von Gefäßthromben führt. Wenig bekannt ist dagegen, dass Produkte der Blutgerinnung auch das Wachstum und die Dissemination von Tumoren fördern können. Diese Tatsache wurde wiederholt in Tiermodellen deutlich, in denen Antikoagulanzien das Tumorwachstum und die Metastasierung verzögerten. Die Beobachtungen am Modell gaben Anlass zu Studien mit oralen Antikoagulanzien beim Menschen, die bei bestimmten Tumorarten vielversprechende frühe Resultate lieferten. Das Interesse an diesem Ansatz der Krebstherapie hat in neuerer Zeit aufgrund der sich mehrenden Hinweise, dass das bekannte Antikoagulans Heparin eine Tumorprogression verhindern könnte, zugenommen. Heparin vermag Angiogenese, Wachstumsfaktor- und Proteaseaktivitäten, Immunfunktion, Zellproliferation und Genexpression derart zu modifizieren, dass die Dissemination des Malignoms blockiert werden könnte. Klinische Studien, in denen Heparin an ein breites Patientenspektrum als Thromboseprophylaxe oder -therapie verabreicht wurde, haben unerwartet eine Verbesserung der Faktors »Überleben« bei denjenigen Patienten der Studien gezeigt, die an einer malignen Erkrankung litten. Eine Meta-Analyse klinischer Studien, die unfraktioniertes (UF) und niedermolekulares Heparin (NMH) bei der Behandlung von venösen Thromboembolien verglichen, deutet an, dass es bei Krebs-Patienten, die NMH erhielten, zu einem wesentlich günstigeren Verlauf der malignen Erkrankung kommen könnte. Diese Befunde bieten die Grundlage für definitive klinische Studien zu NMH an Krebs-Patienten. Die Ergebnisse mehrerer solcher derzeit laufender Studie werden mit Interesse erwartet.

 
  • References

  • 1 Zacharski L, Wojtukiewicz M, Costantini V. et al. Pathways of coagulation/fibrinolysis activation in malignancy. Sem Thromb Hemostas 1992; 18: 104-16.
  • 2 Walsh-McMonagle D, Green D. Low-molecular-weight heparin in the management of Trousseau’s syndrome. Cancer 1997; 80: 649-55.
  • 3 Bergqvist D, Burmark U, Flordal P. et al. Low molecular weight heparin started before surgery as prophylaxis against deep vein thrombosis: 2500 versus 5000 XaI units in 2070 patients. Br J Surg 1995; 82: 496-501.
  • 4 Monreal M, Alastrue A, Rull M. et al. Upper extremity deep venous thrombosis in cancer patients with venous access devices-prophylaxis with low molecular weight heparin (Fragmin). Thromb Haemost 1996; 75: 251-3.
  • 5 Or R, Nagler A, Shpilberg O. et al. Low molecular weight heparin for the prevention of veno-occlusive disease of the liver in bone marrow transplantation patients. Transplantation 1996; 61: 1067-71.
  • 6 Sakuragawa N, Hasegawa H, Maki M. et al. Clinical evaluation of low-molecular-weight heparin (FR-860) on disseminated intravascular coagulation (DIC)-a multicenter co-operative double-blind trial in comparison with heparin. Thromb Res 1993; 72: 475-500.
  • 7 Zacharski L. Rationale for anticoagulant treatment of cancer. In: Honn K, Sloane B. (eds). Hemostatic Mechanism and Metastasis. Boston: Martinus Nijhoff; 1984: 368-74.
  • 8 Zacharski L. Basis for selection of anticoagulant drugs for therapeutic trials in human malignancy. Haemostasis 1986; 16: 300-20.
  • 9 Fenton J. Thrombin and cancer. In: New anticoagulants for the cardiovascular patient. Philadelphia: Hanley and Belfus; 1997: 517-20.
  • 10 Shoji M, Hancock W, Abe K. et al. Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer. Am J Pathol 1998; 152: 399-411.
  • 11 Zacharski L, Ornstein D. Heparin and cancer. Thromb Haemost 1998; 80: 10-23.
  • 12 Zacharski L, Morain W, Schlaeppi J-M. et al. Cellular localization of enzymatically active thrombin in intact human tissue by hirudin binding. Thromb Haemost 1995; 73: 793-7.
  • 13 Siragusa S, Cosmi B, Piovella F. et al. Lowmolecular-weight heparins and unfractionated heparin in the treatment of patients with acute venous thromboembolism: results of a metaanalysis. Am J Med 1996; 100: 269-77.
  • 14 Lensing A, Prins M, Davidson B. et al. Treatment of deep venous thrombosis with lowmolecular weight heparins. A meta-analysis. Arch Int Med 1995; 155: 601-7.
  • 15 Gould M, Dembitzer A, Doyle R. et al. Lowmolecular wight heparins compared with unfractionated heparin for treatment of acute deep venous thrombosis. Ann Intern Med 1999; 130: 800-9.
  • 16 Hettiarachchi R, Smorenburg S, Ginsberg J. et al. Do heparins do more than just treat thrombosis? The influence of heparins on cancer spread. Thromb Haemost 1999; 82: 947-52.
  • 17 Halkin H, Goldberg J, Modan M. et al. Reduction of mortality in general medicine inpatients by low-dose heparin prophylaxis. Ann Intern Med 1982; 96: 561-5.
  • 18 Kingston R, Fielding J, Palmer M. Peri-operative heparin: a possible adjuvant to surgery in colo-rectal cancer?. In J Colorect Dis 1993; 8: 111-5.
  • 19 Torngren S, Rieger A. The influence of heparin and curable resection on the survival of colon cancer. Acta Chir Scand 1983; 149: 427-9.
  • 20 Kohanna F, Sweeney J, Hussey S. et al. Effect of perioperative low-dose heparin administration on the course of colon cancer. Surgery 1983; 93: 433-8.
  • 21 Kakkar A, Hedges A, Williamson R. et al. Perioperative heparin therapy inhibits late death from metastatic cancer. Int J Oncol 1995; 6: 885-8.
  • 22 Lebeau B, Chastang C, Brechot J-M. et al. Subcutaneous heparin treatment increases survival in small cell lung cancer. Cancer 1994; 74: 38-45.
  • 23 von GT, Dietrich M, Neimann F. et al. Blood coagulation and thrombosis in patients with ovarian malignancy. Thromb Haemost 1997; 77: 456-61.
  • 24 Iozzo R. Proteoglycans: structure, function and role in neoplasia. Lab Invest 1985; 53: 373-96.
  • 25 Kjellen L, Lindahl U. Proteoglycans: structures and interactions. Ann Rev Biochem 1991; 60: 443-75.
  • 26 Dawes J. Interactions of heparins in the vascular environment. Haemostas 1993; 23 (Suppl. 01) 212-9.
  • 27 Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell 1991; 64: 867-9.
  • 28 Jacobi C, Ordemann J, Bohm B. et al. Inhibition of peritoneal tumor cell growth and implantation in laparoscopic surgery in a rat model. Am J Surg 1997; 174: 359-63.
  • 29 Nagawa H, Paris P, Chauffert B. et al. Treatment of experimental liver metastasis in the rat by continuous intraportal infusion of 5-fluorouracil and heparin: a pilot study. Anticancer Drugs 1990; 1: 149-56.
  • 30 Levo Y, Pick A, Cohen I. et al. Acute disseminated intravascular coagulation as the presenting and predominant clinical manifestation in a patient with a mucinous adenocarcinoma. Haemostasis 1974; 3: 167-70.
  • 31 Elezarova A, Madzhuga A, Somonova O. et al. Prevention of hemostatic disorders at different stages of surgical treatment in patients with colon cancer. Anesteziol Reanimatol 1994; 6: 39-42.
  • 32 Bergqvist D, Lindblad B. Thromboembolic problems in colorectal cancer surgery. Scand J Gastroenterol Suppl 1988; 149: 74-81.
  • 33 Abbasciano V, Guerra S, Reali M. et al. Pre- and postsurgery activation of blood coagulation in gastric and large bowel cancers: diagnostic, therapeutic and prognostic hints. Oncology 1990; 47: 261-6.
  • 34 Kingston R, Fielding J, Palmer M. An evaluation of the effectiveness and safety of razoxane when used as an adjunct to surgery in colorectal cancer. Report of a controlled randomised study of 603 patients. Int J Colorectal Dis 1993; 8: 106-10.
  • 35 Ye C, Qi M, Fan Q. et al. Expression of midkine in the early stage of carcinogenesis in human colorectal cancer. Br J Cancer 1999; 79: 179-84.
  • 36 Wang Y, Cheong D, Chan S. et al. Heparin/heparan sulfate interacting protein gene expression is up-regulated in human colorectal carcinoma and correlated with differentiation status and metastasis. Cancer Res 1999; 59: 2989-94.
  • 37 Yamakawa T, Kurosawa N, Kadomatsu K. et al. Levels of expression of pleitrophin and protein tyrosine phosphatase zeta are decreased in human colorectal cancers. Cancer Lett 1999; 135: 91-6.
  • 38 Zvibel I, Brill S, Halpern Z. et al. Hepatocyte extracellular matrix modulates expression of growth factors and growth factor receptors in human colon cancer cells. Exp Cell Res 1998; 245: 123-31.
  • 39 Souttou B, Juhl H, Hackenbruck J. et al. Relationship between serum concentrations of the growth factor pleiotrophin and pleiotrophin-positive tumors. J Natl Cancer Inst 1998; 90: 1468-73.
  • 40 Solic N, Davies D. Differential effects of EGF and amphiregulin on adhesion molecule expression and migration of colon carcinoma cells. Exp Cell Res 1997; 234: 465-76.
  • 41 Galzie Z, Fernig D, Smith J. et al. Invasion of human colorectal carcinoma cells is promoted by endogenous basic fibroblast growth factor. Int J Cancer 1997; 71: 390-5.
  • 42 Wong M, Cheung N, Yuen S. et al. Vascular endothelial growth factor is up-regulated in the early pre-malignant stage of colorectal tumour progression. Int J Cancer 1999; 81: 845-50.
  • 43 Arii S, Mori A, Uchida S. et al. Implication of vascular endothelial growth factor in the development and metastasis of human cancers. Hum Cell 1999; 12: 25-30.
  • 44 Berney C, Fisher R, Yang J. et al. Protein markers in colorectal cancer: predictors of liver metastasis. Ann Surg 1999; 230: 179-84.
  • 45 Landriscina M, Cassano A, Ratto C. et al. Quantitative analysis of basic fibroblast growth factor and vascular endothelial growth factor in human colorectal cancer. Br J Cancer 1998; 78: 765-70.
  • 46 Nakata S, Ito K, Fujimori M. et al. Involvement of vascular endothelial growth factor and urokinase-type plasminogen activator receptor in microvessel invasion in human colorectal cancers. Int J Cancer 1998; 79: 179-86.
  • 47 Cheung N, Wong M, Yuen S. et al. Tissue-specific expression pattern of vascular endothelial growth factor isoforms in the malignant transformation of lung and colon. Hum Pathol 1998; 29: 910-4.
  • 48 Aotake T, Lu C, Chiba Y. et al. Changes of angiogenesis and tumor cell apoptosis during colorectal carcinogenesis. Clin Cancer Res 1999; 5: 135-42.
  • 49 Matsumura M, Chiba Y, Lu C. et al. Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression correlated with tumor angiogenesis and macrophage infiltration in colorectal cancer. Cancer Lett 1998; 128: 55-63.
  • 50 Tanigawa N, Amaya H, Matsumura M. et al. Tumor angiogenesis and mode of metastasis in patients with colorectal cancer. Cancer Res 1997; 57: 1043-6.
  • 51 Saclarides T. Angiogenesis in colorectal cancer. Surg Clin North Am 1997; 77: 253-60.
  • 52 Choi H, Hyun M, Jung G. et al. Tumor angiogenesis as a prognostic predictor in colorectal carcinoma with special reference to mode of metastasis and recurrence. Oncology 1998; 55: 575-81.
  • 53 Zebrowski B, Liu W, Ramirez K. et al. Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol 1999; 6: 373-8.
  • 54 Espana F, Estelles A, Fernandez P. et al. Evidence for the regulation of urokinase and tissue type plasminogen activators by the serpin, protein C inhibitor, in semen and blood plasma. Thromb Haemost 1993; 70: 989-94.
  • 55 Matrisian L. The matrix-degrading metalloproteinases. Bioessays 1992; 14: 455-63.
  • 56 Stetler-Stevenson W, Hewitt R, Corcoran M. Matrix metalloproteinases and tumor invasion: from correlation and causality to the clinic. Semin Cancer Biol 1996; 7: 147-54.
  • 57 Chambers A, Matrisian L. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997; 17: 1260-70.
  • 58 Moses M. The regulation of neovascularization by matrix metalloproteinases and their inhibitors. Stem Cells 1997; 15: 180-9.
  • 59 Stetler-Stevenson W, Corcoran M. Tumor angiogenesis: functional similarities with tumor invasion. EXS 1997; 79: 413-8.
  • 60 Ornstein D, Macnab J, Cohn K. Matrix metalloproteinases and inhibitors in colorectal tumors and in normal colonic mucosa. Proc Am Soc Clin Oncol 1999; 18: 250a.
  • 61 Ambiru S, Miyazaki M, Ito H. et al. A prospective study of prognostic value of type IV collagenase activity in colorectal cancer tissue. Dig Dis Sci 1997; 42: 1660-5.
  • 62 Liabakk N, Talbot I, Smith R. et al. Matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Res 1996; 56: 190-6.
  • 63 Murashige M, Miyahara M, Shiraishi N. et al. Enhanced expression of tissue inhibitors of metalloproteinases in human colorectal tumors. Jpn J Clin Oncol 1996; 26: 303-9.
  • 64 Wallon U, Overall C. The hemopexin-like domain (C domain) of human gelatinase A (matrix metalloproteinase-2) requires Ca2+ for fibronectin and heparin binding. Binding properties of recombinant gelatinase A C domain to extracellular matrix and basement membrane components. J Biol Chem 1997; 272: 7473-81.
  • 65 Kenagy R, Nikkari S, Welgus H. et al. Heparin inhibits the induction of three matrix metalloproteinases (stromelysin, 92-kD gelatinase, and collagenase) in primate arterial smooth muscle cells. J Clin Invest 1994; 93: 1987-93.
  • 66 Butler G, Apte S, AWillenbrock F. et al. Human tissue inhibitor if metalloproteinases 3 interacts with both the N- and C-terminal domains of gelatinases A and B. Regulation by polyanions. J Biol Chem 1999; 274: 10846-51.
  • 67 Gogly B, Hornebeck W, Groult N. et al. Influence of heparin(s) on the interleukin-1-beta-induced expression of collagenase, stromelysin-1, and tissue inhibitor of metalloproteinase-1 in human gingival fibroblasts. Biochem Pharmacol 1998; 56: 1447-54.
  • 68 Kitamura M, Maruyama N, Mitarai T. et al. Heparin selectively inhibits gene expression of matrix metalloproteinase transin in cultured mesangial cells. Biochem Biophys Res Commun 1994; 203: 1333-8.
  • 69 Horlocker T, Heit J. Low molecular weight heparin: biochemistry, pharmacology, perioperative prophylaxis regimens and guidelines for regional anesthetic management. Anesth Analg 1997; 85: 874-5.
  • 70 Weitz J. Low molecular weight heparins. New Engl J Med 1997; 337: 688-98.