Hamostaseologie 2005; 25(03): 267-271
DOI: 10.1055/s-0037-1619660
Original Article
Schattauer GmbH

Chromogenic substrates as fundamental tool to design new thrombin inhibitors

Determination of inhibition equilibrium constantsChromogene Substrate als Basis zur Enwicklung neuer ThrombininhibitorenBestimmung von Dissoziationskonstanten
M. Lopez
1   Instituto Venezolano de Investigaciones Cientificas (IVIC), Lab. de Trombosis Experimental, Caracas, Venezuela
,
G. Nowak
2   Research Unit Pharmacological Haemostaseology, Medical Faculty, Friedrich Schiller University Jena, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
27 December 2017 (online)

Summary

The structure-activity relationship of dipetalogastin II, the strongest thrombin inhibitor isolated and cloned from the bug Dipetalogaster maximus, was examined by introducing gradual changes into the molecule by means of molecular biological methods. The effect upon its inhibition equilibrium constant was determined after each change by a chromogenic assay. This structural information was fundamental to design new dipetalogastin II-derived inhibitors.

Our results suggested that the acidic sequence DEHDHDFEDT corresponding to amino acid residues 49 to 58 of dipetalogastin II reacts with the anion binding exosite (ABE) 1 of thrombin. Based on this finding, we constructed a chimeric molecule consisting of the active site blocking segment of dipetalogastin II (amino acid residues 1 to 48) and the ABE 1 blocking segment of hirudin. This construct showed better thrombin inhibitory activity than both separated segments only after the introduction of a glycine linker between both blocking segments. We thus obtained a thrombin inhibitor called dipetarudin with an inhibition equilibrium constant comparable to that of dipetalogastin II and a molecular mass below that of dipetalogastin.

Zusammenfassung

Die Struktur/Aktivitätsbeziehungen von Dipetalogastin II, dem stärksten bisher isolierten und klonierten Thrombininhibitor aus der Raubwanze Dipetalogaster maximus, wurden durch graduelle Veränderungen seiner molekularen Struktur und anschließender Messung der Dissoziationskonstanten mittels chromogener Substratmethode untersucht. Das war die Grundlage für die Synthese weiterer, von Dipetalogastin II abgeleiteter Thrombininhibitoren. Unsere Ergebnisse zeigten, dass die saure Sequenz DEHDHDFEDT (49.-58. Aminosäurerest von Dipetalogastin II) mit der anionischen Bindungsstelle 1 (ABE-1) des Thrombins interagiert.

Deshalb wurde eine chimäre Verbindung entworfen, die zum einen aus dem das Aktivitätszentrum blockierenden Segment von Dipetalogastin II und zum anderen aus dem ABE-1 blockierenden Segment von Hirudin besteht. Das chimäre Molekül zeigte bereits eine akzeptable Thrombinhemmung, die durch Einfügen eines Glycin-Linkers zwischen beide Teilbereiche verstärkt wurde. Dieser Dipetarudin genannte Thrombininhibitor weist bei einem deutlich geringeren Molekulargewicht als Dipetalogastin II eine vergleichbare Dissoziationskonstante auf.

 
  • References

  • 1 Fuentes-Prior P, Noeske-Jungblut C, Donner P. et al. Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. Proc Natl Acad Sci USA 1997; 94: 11845-50.
  • 2 Grütter M, Priestle J, Rahuel J. Crystal structure of the thrombin-hirudin complex: a novel mode of serine protease inhibition. EMBO J 1990; 9: 2361-5.
  • 3 Lange U, Keilholz W, Schaub G. et al. Biochemical characterization of a thrombin inhibitor from the bloodsucking bug Dipetalogaster maximus . Haemostasis 1999; 29: 204-11.
  • 4 López M, Mende K, Steinmetzer T. et al. Cloning, purification and biochemical characterization of dipetarudin, a new chimeric thrombin inhibitor. J Chrom B 2003; 786: 73-80.
  • 5 Maraganore J, Bourdon P, Jablonski J. et al. Design and characterization of hirulogs: a novel class of bivalent peptide inhibitors of thrombin. Biochemistry 1990; 29: 7095-101.
  • 6 Markwardt F. Die Isolierung und chemische Charakterisierung des Hirudins. Z Physiol Chem 1957; 312: 85-9.
  • 7 Mende K, Petoukhova O, Koulitchkova V. et al. Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect Dipetalogaster maximus . Eur J Biochem 1999; 266: 583-90.
  • 8 Morrison J, Stone S. Approaches to the study and analysis of the inhibition of enzymes by slow and tight binding inhibitors. Comm Mol Cell Biophys 1995; 2: 347-68.
  • 9 Morrison J, Walsh C. The behavior and significance of slow-binding enzyme inhibitors. Adv Enzymol 1988; 61: 201-301.
  • 10 Morrison J. Kinetics of the reversible inhibition of enzyme-catalysed reactions by tight-binding inhibitors. Biochim Biophys Acta 1969; 185: 269-86.
  • 11 Naski M, Fenton 2nd J, Maraganore J. et al. The COOH-terminal domain of hirudin. An exosite-directed competitive inhibitor of the action of alpha-thrombin on fibrinogen. J Biol Chem 1990; 265: 13484-9.
  • 12 Richardson J, Kröger B, Hoeffken W. et al. Crystal structure of the human αcomplex: an exosite II-binding inhibitor. EMBO J 2000; 19: 5650-60.
  • 13 Rydel T, Ravichandran K, Tulinsky A. et al. The structure of a complex of recombinant hirudin and human alpha-thrombin. Science 1990; 249: 277-80.
  • 14 Stone S, Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry 1986; 25: 4622-8.
  • 15 van de Locht A, Lamba D, Bauer M. et al. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 1995; 14: 5149-57.
  • 16 van de Locht A, Stubbs M, Bode W. et al. The ornithodorin-thrombin crystal structure, a key to the TAP enigma?. EMBO J 1996; 15: 6011-7.
  • 17 Williams J, Morrison J. The kinetics of reversible tight-binding inhibition. Meth Enzymol 1979; 63: 437-67.