Subscribe to RSS
DOI: 10.1055/s-0037-1619930
Signalwege der Östrogenrezeptoren in Knochenzellen
Estrogen receptor signaling pathways in bone cellsPublication History
eingereicht:
04 January 2010
angenommen:
12 January 2010
Publication Date:
30 December 2017 (online)
Zusammenfassung
Östradiol (E2) ist wichtig für die Regulierung des Knochenmetabolismus – nicht nur bei Frauen, sondern auch bei Männern. Auf der zellulären und molekularen Ebene werden die Effekte von E2 durch Östrogenrezeptoren (ERs) vermittelt. Verschiedene Signalwege sind in den vergangenen Jahren identifiziert worden, die alle eine wichtige Rolle in der Aufrechterhaltung der Knochenstruktur und Knochendichte spielen. ERs vermitteln die Effekte von E2 durch genomische (klassischer und nichtklassischer) und nichtgenomische Signalwege. Die Expression oder Repression von E2-Zielgenen wird des Weiteren durch die Bindung von Koregulatoren (Aktivatoren und Repressoren) an die Rezeptoren reguliert. Steroidrezeptor Koaktivatoren (SRCs) interagieren mit dem ligandengebundenen Zellkernrezeptordimer und dienen als Bindungsoberfläche für Transkriptionsfaktoren. Die Bildung dieses Transkriptionskomplexes ermöglicht eine optimale Transkription von steroidhormonenregulierten Zielgenen. Die Präsenz der ERs sowohl in Osteoblasten, Osteozyten und Osteoklasten beeinflusst die Knochenumgestaltung und Knochenresorption. Die Lebenslänge und die Einleitung der Apoptose der verschiedenen Zelltypen wird durch die Verfügbarkeit von E2 und die genaue Regulierung der verschiedenen Östrogensignalwegen und die Balance von Rezeptoren, Koaktivator und Korepressor Proteinen bestimmt.
Summary
Estradiol (E2) plays a major role in the regulation of bone turnover not only in females, but also in males. At the cellular and molecular level the effects of E2 are mediated by estrogen receptors (ERs). A number of different signaling pathways have been identified in recent years to maintain bone structure and bone mineral density. ERs modulate gene transcription through either the genomic (classical and non-classical) or the non-genomic pathway. In addition, the expression and repression of E2 target genes is regulated through the binding of coregulator proteins (activators or repressors). Steroid receptor coactivators interact with the ligand-bound receptor dimer and recruit additional transcription factors. The formation of this transcription complex facilitates the optimal transcription of steroid hormone regulated target genes. Osteoblasts, osteocytes, and osteoclasts express both the estrogen receptor alpha and beta (ERα and ERβ). E2 has three fundamental effects on bone metabolism: 1) it inhibits the activation of bone remodeling and the initiation of new basic multicellular units (BMUs); 2) it inhibits differentiation and promotes apoptosis of osteoclasts, thereby reducing bone resorption; and 3) while E2 suppresses self-renewal of early mesenchymal progenitors, it promotes the commitment and differentiation and prevents apoptosis of osteoblastic cells, and thereby maintaining bone formation at the cellular level. It is now appreciated that not only the receptors but the relative balance of receptors, coactivator, and corepressor proteins is important for the regulation of bone.
-
Literatur
- 1 Almeida M, Martin-Millan M, Plotkin LI. et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 2007; 282: 27285-27297.
- 2 Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot. Cell 1995; 83: 851857.
- 3 Bord S, Horner A, Beavan S, Compston J. Estrogen receptors alpha and beta are differentially expressed in developing human bone. J Clin Endocrinol Metab 2001; 86: 2309-2314.
- 4 Braidman IP, Davenport LK, Carter DH. et al. Preliminary in situ identification of estrogen target cells in bone. J Bone Miner Res 1995; 10: 74-80.
- 5 Braidman IP, Hainey L, Batra G. et al. Localization of estrogen receptor beta protein expression in adult human bone. J Bone Miner Res 2001; 16: 214-220.
- 6 Carroll JS, Brown M. Estrogen receptor Target gene: an evolving concept. Mol Endocrinol 2006; 20: 1707-1714.
- 7 Carroll JS, Liu S, Brodsky AS. et al. Chromosomewide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 2005; 122: 33-43.
- 8 Charatcharoenwitthaya N, Khosla S, Atkinson EJ. et al. Effect of blockade of TNF-a and interleukin-1 action on bone resorption in early postmenopausal women. J Bone Miner Res 2007; 22: 724-729.
- 9 Dang ZC, Van Bezooijen RL, Karperien M. et al. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res 2002; 17: 394-405.
- 10 Eriksen EF, Colvard DS, Berg NJ. et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988; 241: 84-86.
- 11 Falahati-Nini A, Riggs BL, Atkinson EJ. et al. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 2000; 106: 1553-1560.
- 12 Fiorelli G, Gori F, Petilli M. et al. Functional estrogen receptors in a human preosteoclastic cell line. Proc Natl Acad Sci USA 1995; 92: 2672-2676.
- 13 Garnero P, Sornay-Rendu E, Chapuy M, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 1996; 11: 337-349.
- 14 Gregorio GB, Yamamoto M, Ali AA. et al. Attenuation of the self-renewal of transit-amplifying osteoblast progenitors in the murine bone marrow by 17beta-estradiol. J Clin Invest 2001; 107: 803-812.
- 15 Hall JM, McDonnell DP. The estrogen receptor beta-isoform (ER-beta) of the human estrogen receptor modulates ER-alpha transcriptional activity and is a key regulator of the cellular response to estrogens and antiestrogens. Endocrinology 1999; 140: 5566-5578.
- 16 Hoyland JA, Mee AP, Baird P. et al. Demonstration of estrogen receptor mRNA in bone using in situ reverse-transcriptase polymerase chain reaction. Bone 1997; 20: 87-92.
- 17 Jakacka M, Ito M, Martinson F. et al. An estrogen receptor (ER)alpha deoxyribonucleic acid-binding domain knock-in mutation provides evidence for nonclassical ER pathway signaling in vivo. Mol Endocrinol 2002; 16: 2188-2201.
- 18 Jakacka M, Ito M, Weiss J. et al. Estrogen receptor binding to DNA is not required for its activity through the nonclassical AP1 pathway. J Biol Chem 2001; 276: 13615-13621.
- 19 Jilka RL, Hangoc G, Girasole G. et al. Increased osteoclast development after estrogen loss: Mediation by interleukin-6. Science 1992; 257: 88-91.
- 20 Kameda T, Mano H, Yuasa T. et al. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 1997; 186: 489-495.
- 21 Kimble RB, Matayoshi AB, Vannice JL. et al. Simultaneous block of interleukin-1 and tumor necrosis factor is required to completely prevent bone loss in the early postovariectomy period. Endocrinology 1995; 136: 3054-3061.
- 22 Kitazawa R, Kimble RB, Vannice JL. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J Clin Invest 1994; 94: 2397-2406.
- 23 Kousteni S, Bellido T, Plotkin LI. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001; 104: 719-730.
- 24 Kousteni S, Chen JR, Bellido T. et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science 2002; 298: 843-846.
- 25 Kousteni S, Han L, Chen JR. et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest 2003; 111: 1651-1664.
- 26 Krum SA, Miranda-Carboni GA, Hauschka PV. et al. Estrogen protects bone by inducing fas ligand in osteoblasts to regulate osteoclast survival. Embo J 2008; 27: 535-545.
- 27 Levy N, Tatomer D, Herber CB. et al. Differential regulation of native estrogen receptor-regulatory elements by estradiol, tamoxifen, and raloxifene. Mol Endocrinol 2008; 22: 287-303.
- 28 Lufkin EG, Wahner HW, O’Fallon WM. et al. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med 1992; 117: 1-9.
- 29 Manolagas SC, Kousteni S. Perspective: nonreporductive sites of action of reproductive hormones. Endocrinology 2001; 142: 2200-2204.
- 30 McInerney EM, Weis KE, Sun J. et al. Transcription activation by the human estrogen receptor subtype beta (ER beta) studied with ER beta and ER alpha receptor chimeras. Endocrinology 1998; 139: 4513-4522.
- 31 McKenna NJ, Lanz RB, O’Malley BW. Nuclear receptor coregulators: cellular and molecular biology. Endocr Rev 1999; 20: 321-344.
- 32 McKenna NJ, O’Malley BW. Nuclear receptors, coregulators, ligands, and selective receptor modulators: making sense of the patchwork quilt. Ann N Y Acad Sci 2001; 949: 3-5.
- 33 Modder UIL, Sanyal A, Kearns AE. et al. Effects of loss of steroid receptor coactivator-1 on the skeletal response to estrogen in mice. Endocrinology 2004; 145: 913-921.
- 34 Modder UI, Monroe DG, Fraser DG. et al. Skeletal consequences of deletion of steroid receptor coactivator-2/transcription intermediary factor-2. J Biol Chem 2009; 284: 18767-18777.
- 35 Monroe DG, Johnsen SA, Subramaniam M. et al. Mutual antagonism of estrogen receptors alpha and beta and their preferred interactions with steroid receptor coactivators in human osteoblastic cell lines. J Endocrinol 2003; 176: 349-357.
- 36 Monroe DG, Secreto FJ, Hawse JR. et al. Estrogen receptor isoform-specific regulation of the retinoblastoma binding protein 1 (RBBP1) gene: roles of AF1 and enhancer elements. J Biol Chem 2006; 281: 28596-28604.
- 37 Nakamura T, Imai Y, Matsumoto T. et al. Estrogen prevents bone loss via estrogen receptor alpha and induction of fas ligand in osteoclasts. Cell 2007; 130: 811-823.
- 38 Okazaki R, Inoue D, Shibata M. et al. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 2002; 143: 2349-2356.
- 39 Onoe Y, Miyaura C, Ohta H. et al. Expression of estrogen receptor beta in rat bone. Endocrinology 1997; 138: 4509-4512.
- 40 Oursler MJ, Osdoby P, Pyfferoen J. et al. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA 1991; 88: 6613-6617.
- 41 Oursler MJ, Pederson L, Fitzpatrick L, Riggs BL. Human giant cell tumors of the bone (osteoclastomas) are estrogen target cells. Proc Natl Acad Sci USA 1994; 91: 5227-5231.
- 42 Pacifici R, Brown C, Puseck E. et al. Effects of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci USA 1991; 88: 5134-5138.
- 43 Pacifici R, Rifas L, McCracken R. et al. Ovarian steriod treatment blocks a postmenopausal increase in blood monocyte interleukin 1 release. Proc Natl Acad Sci USA 1989; 86: 2398-2402.
- 44 Paech K, Webb P, Kuiper GGJM. et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites.ERB at AP1 sites. Science 1997; 277: 1508-1510.
- 45 Parikka V, Lehenkari P, Sassi ML. et al. Estrogen reduces the depth of resorption pits by disturbing the organic bone matrix degradation activity of mature osteoclasts. Endocrinology 2001; 142: 5371-5378.
- 46 Pedram A, Razandi M, Kim JK. et al. Developmental phenotype of a membrane only estrogen receptor alpha (MOER) mouse. J Biol Chem 2009; 284: 3488-3495.
- 47 Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol 2006; 20: 1996-2009.
- 48 Pensler JM, Langman CB, Radosevich JA. et al. Sex steroid hormone receptors in normal and dysplastic bone disorders in children. J Bone Miner Res 1990; 05: 493-498.
- 49 Pensler JM, Radosevich JA, Higbee R, Langman CB. Osteoclasts isolated from membranous bone in children exhibit nuclear estrogen and progesterone receptors. J Bone Miner Res 1990; 05: 797-802.
- 50 Picard F, Gehin M, Annicotte JS. et al. SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 2002; 111: 931-941.
- 51 Qin C, Samudio I, Ngwenya S, Safe S. Estrogen-dependent regulation of ornithine decarboxylase in breast cancer cells through activation of nongenomic cAMP-dependent pathways. Mol Carcinog 2004; 40: 160-170.
- 52 Ray A, Prefontaine KE, Ray P. Down-modulation of interleukin-6 gene expression by 17beta-estradiol in the absence of high affinity DNA binding by the estrogen receptor. J Biol Chem 1994; 269: 12940-12946.
- 53 Samudio I, Vyhlidal C, Wang F. et al. Transcriptional activation of deoxyribonucleic acid polymerase alpha gene expression in MCF-7 cells by 17beta estradiol. Endocrinology 2001; 142: 1000-1008.
- 54 Saville B, Wormke M, Wang F. et al. Ligand-, cell-, and estrogen receptor subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter elements. J Biol Chem 2000; 275: 5379-5387.
- 55 Shevde NK, Bendixen AC, Dienger KM, Pike JW. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA 2000; 97: 7829-7834.
- 56 Sims NA, Clement-Lacroix P, Minet D. et al. A functional androgen receptor is not sufficient to allow estradiol to protect bone after gonadectomy in estradiol receptor-deficient mice. J Clin Invest 2003; 111: 1319-1327.
- 57 Sims NA, Dupont S, Krust A. et al. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors beta in bone remodeling in females but not in males. Bone 2002; 30: 18-25.
- 58 Srivastava S, Toraldo G, Weitzmann MN. et al. Estrogen decreases osteoclast formation by downregulating receptor activator of NF- κB ligand (RANKL)-induced JNK activation. J Biol Chem 2001; 276: 8836-8840.
- 59 Sun G, Porter W, Safe S. Estrogen-induced retinoic acid receptor alpha 1 gene expression: role of estrogen receptor-Sp1 complex. Mol Endocrinol 1998; 12: 882-890.
- 60 Syed FA, Modder UIL, Fraser DG. et al. Skeletal effects of estrogen are mediated by opposing actions of classical and nonclassical estrogen receptor pathways. J Bone Miner Res 2005; 20: 1992-2001.
- 61 Tomkinson A, Reeve J, Shaw RW, Noble BS. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 1997; 82: 3128-3135.
- 62 Weitzmann MN, Pacifici R. Estrogen regulatiaon of immune cell bone interactions. Ann N Y Acad Sci 2006; 1068: 256-274.
- 63 Weitzmann MN, Roggia C, Toraldo G. et al. Increased production of IL-7 uncouples bone formation from bone resorption during estrogen deficiency. J Clin Invest 2002; 110: 1643-1650.
- 64 Xu J, Liao L, Ning G. et al. The steroid receptor coactivator SRC-3 (p/CIP/RAC3/AIB1/ACTR/ TRAM-1) is required for normal growth, puberty, female reproductive function, and mammary gland development. Proc Natl Acad Sci U S A 2000; 97: 6379-6384.
- 65 Xu J, O’Malley BW. Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptro function. Rev Endocr Metab Disord 2002; 03: 185-192.
- 66 Xu J, Qiu Y, DeMayo FJ. et al. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science 1998; 279: 1922-1925.
- 67 Yamada T, Kawano H, Sekine K. et al. SRC-1 is necessary for skeletal responses to sex hormones in both males and females. J Bone Miner Res 2004; 19: 1452-1461.
- 68 Zaman G, Jessop HL, Muzylak M. et al. Osteocytes use estrogen receptor alpha to respond to strain but their ERalpha content is regulated by estrogen. J Bone Miner Res 2006; 21: 1297-1306.