Osteologie 2010; 19(02): 123-130
DOI: 10.1055/s-0037-1619932
Sexualhormone und Knochenstoffwechsel
Schattauer GmbH

Bildgebende Osteoporosediagnostik bei Männern

Imaging diagnostics of osteoporosis in men
C. C. Glüer
1   Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
,
R. Barkmann
1   Medizinische Physik, Klinik für Diagnostische Radiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 22. Februar 2010

angenommen: 22. Februar 2010

Publikationsdatum:
30. Dezember 2017 (online)

Zusammenfassung

Die diagnostische Erfassung der Osteoporose des Mannes erfolgt im Hinblick auf Frakturrisiko und Therapieindikation nach ähnlichen Prinzipien wie bei Frauen. Nach den Leitlinien des DVO 2009 ergibt sich die Indikation zur Basisdiagnostik aus einem für Männer und Frauen, abgesehen von hormonalen Aspekten, gleichen Profil klinischer Risikofaktoren. Allerdings erfolgt dies mit einem Altersversatz von zehn Jahren, da das Frakturrisiko von Männern in etwa dem von zehn Jahre jüngeren Frauen entspricht. Im Rahmen der Basisdiagnostik erfolgt die Abschätzung des 10-Jahres-Frakturrisikos für Wirbelkörperund Hüftfrakturen auf der Basis von Messungen der Flächenknochendichte (aBMD) mit ZweiSpektren-Röntgenabsorptiometrie (DXA) und dem Profil der klinischen Risikofaktoren. MännerReferenzdaten werden für DXA ebenso wie für die alternativen Verfahren der quantitativen Computertomografie (QCT) und des quantitativen Ultraschalls (QUS) vorgestellt, so dass hierauf basierend ebenfalls Therapieindikationsstrategien entwickelt werden können. DVO-Leitlinien und das FRAX→-Frakturrisikomodell vorfolgen einen recht ähnlichen Ansatz. Allerdings wäre zu überprüfen, ob die erheblichen vom FRAX→ aufgezeigten Unterschiede in den Frakturinzidenzen von Deutschland, Österreich und der Schweiz durch entsprechende Unterschiede in der aBMD reflektiert werden. Wäre dies der Fall und würde Einigkeit über die Höhe des therapiebedürftigen Frakturrisikos bestehen, so wäre dies eine gute Basis für eine gleichartige Therapieindikationsstrategie in allen drei Ländern.

Summary

With regard to fracture risk assessment and indication of therapy, the diagnostic assessment of osteoporosis in men follows similar principles as established for women. According to the German DVO Guidelines for osteoporosis 2009, the indication for basic diagnostic evaluation of men and women is based on the same set of clinical risk factors, with the exception of risk factors related to hormonal status. However, there is a difference in the age ranges of 10 years because the level of fracture risk for men is similar to that of women who are 10 years younger. During the basic diagnostic evaluation, the 10-year risk of hip and vertebral fracture is determined from the results of the areal bone mineral density (aBMD) measured by Dual X-Ray Absorptiometry (DXA) and the profile of clinical risk factors. Reference data for men are presented for DXA as well as for alternative diagnostic approaches, such as Quantitative Computed Tomography (QCT) and Quantitative Ultrasound (QUS) to provide the basis for the development of therapy decision strategies based on the latter approaches. DVO guidelines and the FRAX→ risk assessment model follow similar approaches. However, it remains to be confirmed whether the substantial differences in fracture incidence rates reported by FRAX→ for Germany, Austria, and Switzerland are reflected by similar differences in the levels of aBMD. If this is the case, and if agreement on the level of the intervention threshold that warrants treatment could be achieved, this would provide a good basis to propose similar strategies for therapy indications for all three countries.

 
  • Literatur

  • 1 Bauer DC, Ewing SK, Cauley JA. et al. Quantitative ultrasound predicts hip and non-spine fracture in men: the MrOS study. Osteoporos Int 2007; 18 (06) 771-777.
  • 2 Beck TJ. Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 2007; 05 (02) 49-55.
  • 3 Binkley N, Kiebzak GM, Lewiecki EM. et al. Recalculation of the NHANES database SD improves T-score agreement and reduces osteoporosis prevalence. J Bone Miner Res 2005; 20 (02) 195-201.
  • 4 Blake GM, Fogelman I. Role of dual-energy X-ray absorptiometry in the diagnosis and treatment of osteoporosis. J Clin Densitom 2007; 10 (01) 102-110.
  • 5 Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 1993; 94 (06) 646-650.
  • 6 Cummings SR, Cawthon PM, Ensrud KE. et al. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 2006; 21 (10) 1550-1556.
  • 7 Dachverband Osteologie e. V. (DVO). DVO-Leitlinie 2009 zur Prophylaxe, Diagnostik und Therapie der Osteoporose bei Erwachsenen. Osteologie 2009; 18: 304-328.
  • 8 Dachverband Osteologie e. V. (DVO). OsteoporoseLeitlinie. Prophylaxe, Diagnostik und Therapie – bei Frauen ab der Menopause, bei Männern ab dem 60. Lebensjahr. Stuttgart: Schattauer 2006..
  • 9 De Laet CE, Van Hout BA, Burger H. et al. Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 1998; 13 (10) 1587-1593.
  • 10 Eastell R. Forearm fracture. Bone 1996; 18 (Suppl. 03) 203S-207S.
  • 11 Engelke K, Adams JE, Armbrecht G. et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 2008; 11 (01) 123-162.
  • 12 Faulkner KG, McClung M, Cummings SR. Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 1994; 09 (07) 1065-1070.
  • 13 Fujiwara S, Sone T, Yamazaki K. et al. Heel bone ultrasound predicts non-spine fracture in Japanese men and women. Osteoporos Int 2005; 16 (12) 2107-2112.
  • 14 Garnero P. Biomarkers for osteoporosis management: utility in diagnosis, fracture risk prediction and therapy monitoring. Mol Diagn Ther 2008; 12 (03) 157-170.
  • 15 Gilsanz V, Boechat MI, Gilsanz R. et al. Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 1994; 190 (03) 678-682.
  • 16 Graeff C, Timm W, Nickelsen TN. et al. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res 2007; 22 (09) 1426-1433.
  • 17 Hanson J. Standardization of femur BMD (letter to the editor). J Bone Miner Res 1997; 12 (08) 1316-1317.
  • 18 Johnell O, Kanis JA, Oden A. et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res 2005; 20 (07) 1185-1194.
  • 19 Kalender WA, Felsenberg D, Louis O. et al. Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Europ J Radiol 1989; 09: 75-80.
  • 20 Kanis JA, Johnell O, Oden A. et al. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 2008; 19 (04) 385-397.
  • 21 Kanis JA, McCloskey EV, Johansson H, Oden A. Approaches to the targeting of treatment for osteoporosis. Nat Rev Rheumatol 2009; 05 (08) 425-431.
  • 22 Khaw KT, Reeve J, Luben R. et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus: EPIC-Norfolk prospective population study. Lancet 2004; 363 9404 197-202.
  • 23 Krebs A, Graeff C, Frieling I. et al. High resolution computed tomography of the vertebrae yields accurate information on trabecular distances if processed by 3D fuzzy segmentation approaches. Bone 2009; 44 (01) 145-152.
  • 24 Krieg MA, Barkmann R, Gonnelli S. et al. Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 2008; 11 (01) 163-187.
  • 25 Landin-Wilhelmsen K, Johansson S, Rosengren A. et al. Calcaneal ultrasound measurements are determined by age and physical activity. Studies in two Swedish random population samples. J Intern Med 2000; 247 (02) 269-278.
  • 26 Lewis CE, Ewing SK, Taylor BC. et al. Predictors of non-spine fracture in elderly men: the MrOS study. J Bone Miner Res 2007; 22 (02) 211-219.
  • 27 Looker AC, Wahner HW, Dunn WL. et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 1998; 08 (05) 468-489.
  • 28 Lu Y, Fuerst T, Hui S, Genant HK. Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int 2001; 12 (06) 438-444.
  • 29 McCloskey EV, Johansson H, Oden A, Kanis JA. From relative risk to absolute fracture risk calculation: the FRAX algorithm. Curr Osteoporos Rep 2009; 07 (03) 77-83.
  • 30 McMahon K, Nightingale J, Pocock N. Discordance in DXA male reference ranges. J Clin Densitom 2004; 07 (02) 121-126.
  • 31 Moayyeri A, Kaptoge S, Dalzell N. et al. Is QUS or DXA better for predicting the 10-year absolute risk of fracture?. J Bone Miner Res 2009; 24 (07) 1319-1325.
  • 32 Njeh CF, Fuerst T, Diessel E, Genant HK. Is quantitative ultrasound dependent on bone structure? A reflection. Osteoporos Int 2001; 12 (01) 1-15.
  • 33 Noon E, Singh S, Cuzick J. et al. Significant differences in UK and US female bone density reference ranges. Osteoporos Int. DOI 10.1007/s00198–009–1153–1. [Epub 2010 Jan 9].
  • 34 O’Neill TW, Felsenberg D, Varlow J. et al. The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 1996; 11 (07) 1010-1018.
  • 35 Orwoll E. Assessing bone density in men. J Bone Miner Res 2000; 15 (10) 1867-1870.
  • 36 Pande I, O’Neill TW, Pritchard C. et al. Bone mineral density, hip axis length and risk of hip fracture in men: results from the Cornwall Hip Fracture Study. Osteoporos Int 2000; 11 (10) 866-870.
  • 37 Poole KE, Mayhew PM, Rose CM. et al. Changing Structure of the Femoral Neck Across the Adult Female Lifespan. J Bone Miner Res. 2009 Jul 13..
  • 38 Riggs BL, Melton 3rd LJIii, Robb RA. et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004; 19 (12) 1945-1954.
  • 39 Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone 2008; 42 (03) 456-466.
  • 40 Sandhu SK, Nguyen ND, Center JR. et al. Prognosis of fracture: evaluation of predictive accuracy of the FRAX algorithm and Garvan nomogram. Osteoporos Int. 2009 Jul 25..
  • 41 Seeman E. The structural and biomechanical basis of the gain and loss of bone strength in women and men. Endocrinol Metab Clin North Am 2003; 32 (01) 25-38.
  • 42 Sosa M, Saavedra P, Munoz-Torres M. et al. Quantitative ultrasound calcaneus measurements: normative data and precision in the spanish population. Osteoporos Int 2002; 13 (06) 487-492.
  • 43 Uusi-Rasi K, Semanick LM, Zanchetta JR. et al. Effects of teriparatide [rhPTH (1–34)] treatment on structural geometry of the proximal femur in elderly osteoporotic women. Bone 2005; 36 (06) 948-958.
  • 44 van Staa TP, Dennison EM, Leufkens HG, Cooper C. Epidemiology of fractures in England and Wales. Bone 2001; 29 (06) 517-522.
  • 45 Welch A, Camus J, Dalzell N. et al. Broadband ultrasound attenuation (BUA) of the heel bone and its correlates in men and women in the EPIC-Norfolk cohort: a cross-sectional population-based study. Osteoporos Int 2004; 15 (03) 217-225.
  • 46 Zebaze RM, Jones A, Welsh F. et al. Femoral neck shape and the spatial distribution of its mineral mass varies with its size: Clinical and biomechanical implications. Bone 2005; 37 (02) 243-252.