Osteologie 2011; 20(01): 17-22
DOI: 10.1055/s-0037-1619969
Frakturheilung
Schattauer GmbH

Die Bedeutung der Biomechanik bei der physiologischen Frakturheilung

Significance of biomechanics during physiological fracture healing
F. Witt
1   Julius Wolff Institut, Charité – Universitätsmedizin Berlin
2   Center für Muskuloskeletale Chirurgie, Charité – Universitätsmedizin Berlin
,
H. Schell
1   Julius Wolff Institut, Charité – Universitätsmedizin Berlin
2   Center für Muskuloskeletale Chirurgie, Charité – Universitätsmedizin Berlin
,
M. Heller
1   Julius Wolff Institut, Charité – Universitätsmedizin Berlin
2   Center für Muskuloskeletale Chirurgie, Charité – Universitätsmedizin Berlin
3   Center für Sportwissenschaft und Sportmedizin Berlin
,
G. N. Duda
1   Julius Wolff Institut, Charité – Universitätsmedizin Berlin
2   Center für Muskuloskeletale Chirurgie, Charité – Universitätsmedizin Berlin
3   Center für Sportwissenschaft und Sportmedizin Berlin
› Author Affiliations
Further Information

Publication History

eingereicht: 14 February 2011

angenommen: 16 February 2011

Publication Date:
30 December 2017 (online)

Zusammenfassung

Um Frakturheilungszeiten zu minimieren und Patienten eine möglichst schnelle und weitestgehende Rehabilitation zu ermöglichen, ist ein Verständnis sowohl der biologischen Prozesse der Heilung als auch der mechanischen Bedingungen, unter denen diese Heilung vonstatten geht, nötig. Wissen um die mechanischen Bedingungen ist insbesondere deshalb von Bedeutung, da die biologischen Prozesse der Heilung und Regeneration von den durch Muskelund Gelenkkräfte definierten Rahmenbedingungen wesentlich beeinflusst werden. Durch die Wahl der Osteosynthese können die mechanischen Rahmenbedingungen an der Fraktur und dem physikalischen Stimulus, dem die zellulären Strukturen ausgesetzt sind, weiter moduliert werden. Unabhängig von der Methode der Fraktur-stabilisierung ist die sekundäre Knochenheilung immer einer komplexen interfragmentären Bewegung ausgesetzt. Dabei beeinflussen die auftretenden Fragmentbewegungen den Heilungsprozess in seiner Art und Schnelligkeit.

Summary

To minimize fracture healing times and to enable patients fast rehabilitation, an understanding of both the biological processes of healing and the mechanical conditions, under which this healing is taking place, is necessary. Knowledge of the mechanical conditions is of particular interest because the biological processes of healing and regeneration are affected by the environment defined by muscle and joint forces. The mechanical conditions at the fracture and the physical stimulus, which cellular structures are exposed to, can be further modulated by the choice of internal fixation. Regardless of the fracture stabilization, secondary bone healing underlies complex interfragmentary movements. Here, the interfragmentary movements influence the bone healing process itself and the regeneration speed.

 
  • Literatur

  • 1 Allori AC, Sailon AM, Pan JH, Warren SM. Biological basis of bone formation, remodeling, and repair-part III: biomechanical forces. Tissue Eng Part B Rev 2008; 14: 285-293.
  • 2 Augat P, Simon U, Liedert A, Claes L. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos Int 2005; 16 (Suppl. 02) S36-S43.
  • 3 Bergmann G, Graichen F, Rohlmann A. Hip joint loading during walking and running, measured in two patients. J Biomech 1993; 26: 969-990.
  • 4 Bishop NE, van Rhijn M, Tami I. et al. Shear does not necessarily inhibit bone healing. Clin Orthop Relat Res 2006; 443: 307-314.
  • 5 Claes LE, Heigele CA, Neidlinger-Wilke C. et al. Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 1998; 355 (Suppl): S132-S147.
  • 6 Duda GN, Eckert-Hübner K, Sokiranski R. et al. Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J Biomech 1998; 31: 201-210.
  • 7 Duda GN, Mandruzzato F, Heller M. et al. Mechanical boundary conditions of fracture healing: borderline indications in the treatment of unreamed tibial nailing. J Biomech 2001; 34 (05) 639-650.
  • 8 Dudley-Javoroski S, Shields RK. Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev 2008; 45: 283-296.
  • 9 Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998; 355 (Suppl): S7-S21.
  • 10 Epari DR, Schell H, Bail HJ, Duda GN. Instability prolongs the chondral phase during bone healing in sheep. Bone 2006; 38: 864-870.
  • 11 Epari DR, Lienau J, Schell H. et al. Pressure, oxygen tension and temperature in the periosteal callus during bone healing--an in vivo study in sheep. Bone 2008; 43: 734-739.
  • 12 Frost HM. The Laws of Bone Structure. Springfield, IL: Thomas; 1964
  • 13 Frost HM. Perspectives: bone’s mechanical usage windows. Bone Miner 1992; 19: 257-271.
  • 14 Gerstenfeld LC, Cullinane DM, Barnes GL. et al. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003; 88: 873-884.
  • 15 Glaeser JD, Geissler S, Ode A. et al. Modulation of matrix metalloprotease-2 levels by mechanical loading of three-dimensional mesenchymal stem cell constructs: impact on in vitro tube formation. Tissue Eng Part A 2010; 16: 3139-3148.
  • 16 Goodship AE, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. J Bone Joint Surg Br 1985; 67: 650-655.
  • 17 Groothuis A, Duda GN, Wilson CJ. et al. Mechanical stimulation of the pro-angiogenic capacity of human fracture haematoma: involvement of VEGF mechano-regulation. Bone 2010; 47: 438-444.
  • 18 Haas NP. Callusmodulation - Fiktion oder Realität?. Chirurg 2000; 71: 987-988.
  • 19 Heller MO, Bergmann G, Deuretzbacher G. et al. Influence of femoral anteversion on proximal femoral loading: measurement and simulation in four patients. Clin Biomech 2001; 16 (08) 644-649.
  • 20 Ingber DE. Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 2003; 116: 1157-1173.
  • 21 Jones HH, Priest JD, Hayes WC. et al. Humeral hypertrophy in response to exercise. J Bone Joint Surg Am 1977; 59: 204-208.
  • 22 Kaspar D, Seidl W, Neidlinger-Wilke C. et al. Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 2002; 35: 873-880.
  • 23 Kasper G, Dankert N, Tuischer J. et al. Mesenchymal stem cells regulate angiogenesis according to their mechanical environment. Stem Cells 2007; 25: 903-910.
  • 24 Kenwright J, Goodship AE. Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop Relat Res 1989; 241: 36-47.
  • 25 Kenwright J, Richardson JB, Cunningham JL. et al. Axial movement and tibial fractures. A controlled randomised trial of treatment. J Bone Joint Surg Br 1991; 73: 654-659.
  • 26 Lang T, LeBlanc A, Evans H. et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 2004; 19: 1006-1012.
  • 27 Lanyon LE, Goodship AE, Pye CJ, MacFie JH. Mechanically adaptive bone remodelling. J Biomech 1982; 15: 141-154.
  • 28 Lienau J, Schell H, Duda GN. et al. Initial vascularization and tissue differentiation are influenced by fixation stability. J Orthop Res 2005; 23: 639-645.
  • 29 Liskova M, Hert J. Reaction of bone to mechanical stimuli. Part 2.Periosteal and endosteal reaction to tibial diaphysis in rabbit to intermittent loading. Folia Morphol 1971; 19: 301-317.
  • 30 McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br 1978; 60-B: 150-162.
  • 31 Morgan EF, Gleason RE, Hayward LNM. et al. Mechanotransduction and fracture repair. J Bone Joint Surg Am 2008; 90 (Suppl. 01) 25-30.
  • 32 Rittweger J, Beller G, Armbrecht G. et al. Prevention of bone loss during 56 days of strict bed rest by sidealternating resistive vibration exercise. Bone 2010; 46: 137-147.
  • 33 Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984; 66: 397-402.
  • 34 Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orthop Relat Res 1994; 298: 165-174.
  • 35 Schell H, Epari DR, Kassi J. et al. The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 2005; 23: 1022-1028.
  • 36 Seebeck P, Thompson MS, Parwani A. et al. Gait evaluation: a tool to monitor bone healing?. Clin Biomech (Bristol, Avon) 2005; 20: 883-891.
  • 37 Stürmer KM. Histologische Befunde der Frakturheilung unter Fixateur externe und ihre klinische Bedeutung, Unfalichirurgie. 1984; 10 (03) 110-122.
  • 38 Taylor WR, Poepplau BM, König C. et al. The medial-lateral force distribution in the ovine stifle joint during walking. J Orthop Res. 2010 Oct 18. [Epub ahead of print].
  • 39 Thompson D. In: Bonner JT. ed. On Growth and Form (Abridged Edition). Cambridge: Cambridge Press; 1961. [originally published 1917]..
  • 40 Wolff J. Das Gesetz der Transformation der Knochen. Berlin: Hirschwald; 1892. Reprint Berlin: Pro BUSINESS; 2010