Subscribe to RSS
DOI: 10.1055/s-0037-1619973
Großtiermodelle der Osteoporose
Large animal models of osteoporosisPublication History
eingereicht:
01 February 2011
angenommen:
09 February 2011
Publication Date:
30 December 2017 (online)
Zusammenfassung
Die Osteoporose ist eine chronische Erkrankung, die durch einen Knochenmasseverlust und eine Störung der trabekulären und kortikalen Mikroarchitektur mit konsekutiv erhöhter Knochenbrüchigkeit gekennzeichnet ist. Die Osteoporose gehört zu den fünf häufigsten erworbenen Erkrankungen der westlichen Welt, woraus eine intensive Suche nach besseren und effektiveren Therapiekonzepten zur Prävention und Behandlung der Osteoporose resultiert. Hierfür sind präklinische Studien in Tiermodellen, die annäherungsweise die humane Erkrankung nachbilden, von essenzieller Bedeutung. Großtiermodelle wie zum Beispiel von Schaf und Schwein sind aufgrund der zum Menschen sehr ähnlichen Knochen-Anatomie und -Physiologie zur präklinischen Untersuchung der Osteoporose sehr gut geeignet. Die DFG-Forschergruppe 793 widmet sich der Untersuchung der Mechanismen der Frakturheilung bei Osteoporose mit dem Ziel, durch ein verbessertes mechanistisches Verständnis einen klinisch wichtigen Beitrag zur Therapie der wesentlichen krankmachenden Komplikation – der Fraktur – des osteoporotischen Knochenmasseverlusts leisten zu können. Ein wesentlicher Aspekt der Forschergruppe ist die Etablierung von geeigneten Großtiermodellen, die für die Untersuchung der Frakturheilung bei Osteoporose von essenzieller Bedeutung sind. Der vorliegende Artikel gibt darüber hinaus einen aktuellen und vollständigen Überblick über die Großtiermodelle für die Osteoporoseforschung.
Summary
Osteoporosis is a chronic disease characterised by a loss of bone density and a deterioration of the trabecular and cortical microarchitecture, with a resultant increase in bone fragility. Osteoporosis is one of the five most common acquired diseases in the Western world and this has resulted in an intensive search for better and more effective forms of prevention and treatment. Preclinical studies of animal models that come close to replicating the human disease are essential to this search. Large animal models, such as sheep and pigs, are highly suited to preclinical studies of osteoporosis because of their very similar bone anatomy and physiology. DFG Research Group 793 is dedicated to investigating the mechanisms of fracture healing in osteoporosis, with the aim of making a clinically important contribution to the treatment of the main complication of loss of bone density in osteoporosis – fracture – through better mechanistic understanding. An important aspect of the work of the research group is to establish suitable large animal models, which are essential to the study of fracture healing in osteoporosis. This article also provides an up-to-date and complete overview of large animal models for osteoporosis research.
8 Alle Autoren sind Mitglieder der Transregionalen DFG-Forschergruppe 793 „Frakturheilung bei Osteoporose”
-
Literatur
- 1 Pogoda P, Priemel M, Schilling AF. et al. Mouse models in skeletal physiology and osteoporosis: experiences and data on 14,839 cases from the Hamburg Mouse Archives. J Bone Miner Metab 2005; 23 (Suppl): 97-102.
- 2 Thompson DD, Simmons HA, Pirie CM, Ke HZ. FDA Guidelines and animal models for osteoporosis. Bone 1995; 17: 125S-133S.
- 3 Frenkel JK. Choice of animal models for the study of disease processes in man. Introduction. Fed Proc 1969; 28: 160-161.
- 4 Kalu DN. The ovariectomized rat model of postmenopausal bone loss. Bone Miner 1991; 15: 175-191.
- 5 Reinwald S, Burr D. Review of nonprimate, large animal models for osteoporosis research. J Bone Miner Res 2008; 23: 1353-1368.
- 6 Schroder B, Vossing S, Breves G. In vitro studies on active calcium absorption from ovine rumen. J Comp Physiol B 1999; 169: 487-494.
- 7 Hillier ML, Bell LS. Differentiating human bone from animal bone: a review of histological methods. J Forensic Sci 2007; 52: 249-263.
- 8 Sone K, Yamamoto-Sawamura T, Kuwahara S. et al. Changes of estrous cycles with aging in female F344/n rats. Exp Anim 2007; 56: 139-148.
- 9 Martin RK, Albright JP, Jee WS. et al. Bone loss in the beagle tibia: influence of age, weight, and sex. Calcif Tissue Int 1981; 33: 233-238.
- 10 Aerssens J, Boonen S, Lowet G, Dequeker J. Interspecies differences in bone composition, density, and quality: potential implications for in vivo bone research. Endocrinology 1998; 139: 663-670.
- 11 Boyce RW, Paddock CL, Gleason JR. et al. The effects of risedronate on canine cancellous bone remodeling: three-dimensional kinetic reconstruction of the remodeling site. J Bone Miner Res 1995; 10: 211-221.
- 12 Kimmel DB, Jee WS. A quantitative histologic study of bone turnover in young adult beagles. Anat Rec 1982; 203: 31-45.
- 13 Turner AS. Animal models of osteoporosis - necessity and limitations. Eur Cell Mater 2001; 01: 66-81.
- 14 Shen V, Dempster DW, Birchman R. et al. Lack of changes in histomorphometric, bone mass, and biochemical parameters in ovariohysterectomized dogs. Bone 1992; 13: 311-316.
- 15 Newton BI, Cooper RC, Gilbert JA. et al. The ovariectomized sheep as a model for human bone loss. J Comp Pathol 2004; 130: 323-326.
- 16 Egermann M, Goldhahn J, Schneider E. Animal models for fracture treatment in osteoporosis. Osteoporos Int 2005; 16 (Suppl. 02) S129-S138.
- 17 Wilson AK, Bhattacharyya MH, Miller S. et al. Ovariectomy-induced changes in aged beagles: histomorphometry of rib cortical bone. Calcif Tissue Int 1998; 62: 237-243.
- 18 Martin RB, Butcher RL, Sherwood LL. et al. Effects of ovariectomy in beagle dogs. Bone 1987; 08: 23-31.
- 19 Dannucci GA, Martin RB, Patterson-Buckendahl P. Ovariectomy and trabecular bone remodeling in the dog. Calcif Tissue Int 1987; 40: 194-199.
- 20 Monier-Faugere MC, Friedler RM, Bauss F, Malluche HH. A new bisphosphonate, BM 21.0955, prevents bone loss associated with cessation of ovarian function in experimental dogs. J Bone Miner Res 1993; 08: 1345-1355.
- 21 Monier-Faugere MC, Geng Z, Qi Q. et al. Calcitonin prevents bone loss but decreases osteoblastic activity in ovariohysterectomized beagle dogs. J Bone Miner Res 1996; 11: 446-455.
- 22 Monier-Faugere MC, Geng Z, Paschalis EP. et al. Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res 1999; 14: 1768-1778.
- 23 Nakamura T, Nagai Y, Yamato H. et al. Regulation of bone turnover and prevention of bone atrophy in ovariectomized beagle dogs by the administration of 24R,25(OH)2D3. Calcif Tissue Int 1992; 50: 221-227.
- 24 Faugere MC, Friedler RM, Fanti P, Malluche HH. Bone changes occurring early after cessation of ovarian function in beagle dogs: a histomorphometric study employing sequential biopsies. J Bone Miner Res 1990; 05: 263-272.
- 25 Malluche HH, Faugere MC, Rush M, Friedler R. Osteoblastic insufficiency is responsible for maintenance of osteopenia after loss of ovarian function in experimental beagle dogs. Endocrinology 1986; 119: 2649-2654.
- 26 Boyce RW, Franks AF, Jankowsky ML. et al. Sequential histomorphometric changes in cancellous bone from ovariohysterectomized dogs. J Bone Miner Res 1990; 05: 947-953.
- 27 Geusens P, Schot LP, Nijs J, Dequeker J. Calciumdeficient diet in ovariectomized dogs limits the effects of 17 beta-estradiol and nandrolone decanoate on bone. J Bone Miner Res 1991; 06: 791-797.
- 28 Cook SD, Skinner HB, Haddad RJ. A quantitative histologic study of osteoporosis produced by nutritional secondary hyperparathyroidism in dogs. Clin Orthop Relat Res 1983; 175: 105-120.
- 29 Johnson RB, Gilbert JA, Cooper RC. et al. Effect of estrogen deficiency on skeletal and alveolar bone density in sheep. J Periodontol 2002; 73: 383-391.
- 30 Pearce AI, Richards RG, Milz S. et al. ,Animal models for implant biomaterial research in bone: a review. Eur Cell Mater 2007; 13: 1-10.
- 31 Thorndike EA, Turner AS. In search of an animal model for postmenopausal diseases. Front Biosci 1998; 03: c17-c26.
- 32 Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone 1995; 16: 277S-284S.
- 33 Rocca M, Fini M, Giavaresi G. et al. Osteointegration of hydroxyapatite-coated and uncoated titanium screws in long-term ovariectomized sheep. Biomaterials 2002; 23: 1017-1023.
- 34 Hornby SB, Ford SL, Mase CA, Evans GP. Skeletal changes in the ovariectomised ewe and subsequent response to treatment with 17 beta oestradiol. Bone 1995; 17: 389S-394S.
- 35 Sigrist IM, Gerhardt C, Alini M. et al. The long-term effects of ovariectomy on bone metabolism in sheep. J Bone Miner Metab 2007; 25: 28-35.
- 36 Turner AS, Alvis M, Myers W. et al. Changes in bone mineral density and bone-specific alkaline phosphatase in ovariectomized ewes. Bone 1995; 17: 395S-402S.
- 37 Chavassieux P, Garnero P, Duboeuf F. et al. Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: a biochemical, histomorphometric, and densitometric study. J Bone Miner Res 2001; 16: 89-96.
- 38 Lill CA, Fluegel AK, Schneider E. Sheep model for fracture treatment in osteoporotic bone: a pilot study about different induction regimens. aJ Orthop Trauma 2000; 14: a559-565 discussion 565-566..
- 39 Augat P, Schorlemmer S, Gohl C. et al. Glucocorticoid-treated sheep as a model for osteopenic trabecular bone in biomaterials research. J Biomed Mater Res A 2003; 66: 457-462.
- 40 MacLeay JM, Olson JD, Enns RM. et al. Dietary-induced metabolic acidosis decreases bone mineral density in mature ovariectomized ewes. Calcif Tissue Int 2004; 75: 431-437.
- 41 Pogoda P, Egermann M, Schnell JC. et al. Leptin inhibits bone formation not only in rodents, but also in sheep. J Bone Miner Res 2006; 21: 1591-1599.
- 42 Egermann M, Goldhahn J, Holz R. et al. A sheep model for fracture treatment in osteoporosis: benefits of the model versus animal welfare. Lab Anim 2008; 42: 453-464.
- 43 Mahmood I, Martinez M, Hunter RP. Interspecies allometric scaling. Part I: prediction of clearance in large animals. J Vet Pharmacol Ther 2006; 29: 415-423.
- 44 Turner AS, Mallinckrodt CH, Alvis MR, Bryant HU. Dose-response effects of estradiol implants on bone mineral density in ovariectomized ewes. Bone 1995; 17: 421S-427S.
- 45 Deloffre P, Hans D, Rumelhart C. et al. Comparison between bone density and bone strength in glucocorticoid-treated aged ewes. Bone 1995; 17: 409S-414S.
- 46 He Y, Sun XC, Chen HQ. et al. Bone histomorphometry study on lumbar vertebrae microstructure of ovariectomized goats. Zhonghua Fu Chan Ke Za Zhi 2003; 38: 405-408.
- 47 Leung KS, Siu WS, Cheung NM. et al. Goats as an osteopenic animal model. J Bone Miner Res 2001; 16: 2348-2355.
- 48 Fulton LKCMS, Farris HE. The Goat as a Model for Biomedical Research and Teaching. ILAR J 1994; 36: 21-28.
- 49 Almond GW. Research applications using pigs. Vet Clin North Am Food Anim Pract 1996; 12: 707-716.
- 50 Smith AC, Swindle MM. Preparation of swine for the laboratory. ILAR J 2006; 47: 358-363.
- 51 Mosekilde L, Weisbrode SE, Safron JA. et al. Evaluation of the skeletal effects of combined mild dietary calcium restriction and ovariectomy in Sinclair S-1 minipigs: a pilot study. J Bone Miner Res 1993; 08: 1311-1321.
- 52 Gluer CC, Scholz-Ahrens KE, Helfenstein A. et al. Ibandronate treatment reverses glucocorticoid-induced loss of bone mineral density and strength in minipigs. Bone 2007; 40: 645-655.
- 53 Martiniakova M, Grosskopf B, Omelka R. et al. Differences among species in compact bone tissue microstructure of mammalian skeleton: use of a discriminant function analysis for species identification. J Forensic Sci 2006; 51: 1235-1239.
- 54 Martinez-Gonzalez JM, Cano-Sanchez J, Campo-Trapero J. et al. Evaluation of minipigs as an animal model for alveolar distraction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2005; 99: 11-16.
- 55 Lin JH, Lu AY. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacol Rev 1997; 49: 403-449.
- 56 Laven BA, Orvieto MA, Chuang MS. et al. Renal tolerance to prolonged warm ischemia time in a laparoscopic versus open surgery porcine model. J Urol 2004; 172: 2471-2474.
- 57 Dehoux JP, Gianello P. The importance of large animal models in transplantation. Front Biosci 2007; 12: 4864-4880.
- 58 Aigner B, Renner S, Kessler B. et al. Transgenic pigs as models for translational biomedical research. J Mol Med 2010; 88: 653-664.
- 59 Hofmann A, Kessler B, Ewerling S. et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 2003; 04: 1054-1060.
- 60 Hofmann A, Zakhartchenko V, Weppert M. et al. Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biol Reprod 2004; 71: 405-409.
- 61 Ewerling S, Hofmann A, Klose R. et al. Evaluation of laser-assisted lentiviral transgenesis in bovine. Transgenic Res 2006; 15: 447-454.
- 62 Reichenbach M, Lim T, Reichenbach HD. et al. Germ-line transmission of lentiviral PGK-EGFP integrants in transgenic cattle: new perspectives for experimental embryology. Transgenic Res 2010; 19: 549-556.
- 63 Hofmann A, Kessler B, Ewerling S. et al. Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther 2006; 13: 59-66.
- 64 Renner S, Fehlings C, Herbach N. et al. Glucose intolerance and reduced proliferation of pancreatic beta-cells in transgenic pigs with impaired glucosedependent insulinotropic polypeptide function. Diabetes 2010; 59: 1228-1238.
- 65 Mizuno A, Kanno T, Hoshi M. et al. Transgenic mice overexpressing soluble osteoclast differentiation factor (sODF) exhibit severe osteoporosis. J Bone Miner Metab 2002; 20: 337-344.
- 66 Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 1992; 89: 5547-5551.
- 67 Smith SY, Jolette J, Turner CH. Skeletal health: primate model of postmenopausal osteoporosis. Am J Primatol 2009; 71: 752-765.
- 68 Mann DR, Gould KG, Collins DC. A potential primate model for bone loss resulting from medical oophorectomy or menopause. J Clin Endocrinol Metab 1990; 71: 105-110.
- 69 Thompson DD, Seedor JG, Quartuccio H. et al. The bisphosphonate, alendronate, prevents bone loss in ovariectomized baboons. J Bone Miner Res 1992; 07: 951-960.
- 70 Jerome CP, Turner CH, Lees CJ. Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int 1997; 60: 265-270.
- 71 Miller LC, Weaver DS, McAlister JA, Koritnik DR. Effects of ovariectomy on vertebral trabecular bone in the cynomolgus monkey (Macaca fascicularis). Calcif Tissue Int 1986; 38: 62-65.
- 72 Brommage R. Perspectives on using nonhuman primates to understand the etiology and treatment of postmenopausal osteoporosis. J Musculoskelet Neuronal Interact 2001; 01: 307-325.
- 73 Jerome CP. Primate models of osteoporosis. Lab Anim Sci 1998; 48: 618-622.
- 74 Fox J, Miller MA, Newman MK. et al. Effects of daily treatment with parathyroid hormone 1-84 for 16 months on density, architecture and biomechanical properties of cortical bone in adult ovariectomized rhesus monkeys. Bone 2007; 41: 321-330.
- 75 Fox J, Miller MA, Newman MK. et al. Treatment of skeletally mature ovariectomized rhesus monkeys with PTH (1-84) for 16 months increases bone formation and density and improves trabecular architecture and biomechanical properties at the lumbar spine. J Bone Miner Res 2007; 22: 260-273.
- 76 Fox J, Miller MA, Recker RR. et al. Effects of treatment of ovariectomized adult rhesus monkeys with parathyroid hormone 1-84 for 16 months on trabecular and cortical bone structure and biomechanical properties of the proximal femur. Calcif Tissue Int 2007; 81: 53-63.
- 77 Brommage R, Hotchkiss CE, Lees CJ. et al. Daily treatment with human recombinant parathyroid hormone-(1-34), LY333334, for 1 year increases bone mass in ovariectomized monkeys. J Clin Endocrinol Metab 1999; 84: 3757-3763.
- 78 Burr DB, Hirano T, Turner CH. et al. Intermittently administered human parathyroid hormone(1-34) treatment increases intracortical bone turnover and porosity without reducing bone strength in the humerus of ovariectomized cynomolgus monkeys. J Bone Miner Res 2001; 16: 157-165.
- 79 Jerome CP, Johnson CS, Vafai HT. et al. Effect of treatment for 6 months with human parathyroid hormone (1-34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 1999; 25: 301-309.
- 80 Jerome CP, Peterson PE. Nonhuman primate models in skeletal research. Bone 2001; 29: 1-6.
- 81 Balena R, Toolan BC, Shea M. et al. The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest 1993; 92: 2577-2586.
- 82 Binkley N, Kimmel D, Bruner J. et al. Zoledronate prevents the development of absolute osteopenia following ovariectomy in adult rhesus monkeys. J Bone Miner Res 1998; 13: 1775-1782.
- 83 Itoh F, Kojima M, Furihata-Komatsu H. et al. Reductions in bone mass, structure, and strength in axial and appendicular skeletons associated with increased turnover after ovariectomy in mature cynomolgus monkeys and preventive effects of clodronate. J Bone Miner Res 2002; 17: 534-543.
- 84 Hotchkiss CE, Stavisky R, Nowak J. et al. Levormeloxifene prevents increased bone turnover and vertebral bone loss following ovariectomy in cynomolgus monkeys. Bone 2001; 29: 7-15.
- 85 Lees CJ, Register TC, Turner CH. et al. Effects of raloxifene on bone density, biomarkers, and histomorphometric and biomechanical measures in ovariectomized cynomolgus monkeys. Menopause 2002; 09: 320-328.