Osteologie 2011; 20(04): 299-303
DOI: 10.1055/s-0037-1620006
Vitamin D
Schattauer GmbH

Pharmacology of vitamin D

Anything new?Was gibt es Neues in der Pharmakologie von Vitamin D?
H. H. Glossmann
1   Institute for Biochemical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

received: 10 September 2011

accepted: 29 September 2011

Publication Date:
30 December 2017 (online)

Summary

A main source of food for ancient humans (“hunter-gatherers”) was fresh meat. It contains much more 25(OH) vitamin D3 (25[OH]D3) than vitamin D3. It seems likely that in northern Europe, where vitamin D is in short supply during the extended winter season, evolutionary forces may have led to optimization of intestinal absorption of 25(OH)D3: excellent oral bioavailability (60 – 80 %) and little inter-individual variation. 25(OH)D3 could be considered the ideal oral “sunshine equivalent” for rapid and reliable restoration of an adequate vitamin D status e. g. in clinical situations. Unless biliary and pancreatic secretion or epithelial function in the small intestine is compromised, vitamin D3 in „pharmacological doses” is absorbed by 60 – 100 % as a „blind passenger” together with longchain fatty acids and cholesterol. The question is raised whether very low amounts of the vitamin (as in the diet) are absorbed by a more active (“second order”) mechanism. Experimental evidence obtained from cell culture systems indeed suggests that vitamin D3 can be taken up in part from enterocytes via the same complex, tightly regulated and saturable transport system as is e. g. cholesterol. The ezetimibe drug receptor NPC1L1 may play a role in this process. The Apolipoprotein Epsilon 4 genotype occurs in a north-south gradient in Europe. Allele frequencies are as high as 30 % in Finland and much lower, 5 %, around the Mediterranean Sea. The Epsilon 4 genotype may have been selected in the north because it enables more vitamin D to be obtained from food. The association of higher levels of 25(OH)D3 in humans with the Epsilon 4 genotype, together with evidence from knock-in mice, supports this hypothesis. It is possible, but as yet unproven, that this “lipid-thrifty” genotype is the cause of excess cardiovascular mortality sometimes observed in cohorts with high serum concentrations of 25(OH)D. Latitudinal gradients for mutations in the enzyme delta-7-dehydrocholesterol reductase (DHCR-7) suggest that similar evolutionary adaptations occurred for vitamin D synthesized in the skin following sun exposure.

Zusammenfassung

Für unsere Vorfahren („Jäger und Sammler”) war Fleisch ein Hauptnahrungsmittel. Es enthält wesentlich mehr 25-(OH)-Vitamin D3 als Vitamin D3. Es ist wahrscheinlich, dass sich im nördlichen Teil Europas wegen fehlender Vitaminbildung (über die Sonne) während der langen Wintermonate die intestinale Resorption des Prohormons evolutionär adaptierte und optimal wurde: Ausgezeichnete orale Bioverfügbarkeit und minimale inter-individuelle Variation. Daher kann Calcidiol als das ideale orale „Sonnenschein-Äquivalent” für die rasche und zuverlässige Anhebung eines insuffizienten „Vitamin-D-Status” z. B. in klinischen Situationen betrachtet werden. Vitamin D3 wird in pharmakologischen Dosen zwischen 60 – 100 % als „Blinder Passagier erster Ordnung” absorbiert. Voraussetzungen hierfür sind eine intakte Leber- und Pankreasfunktion sowie ein gesunder Dünndarm. Die Dosis muss entweder mit Fett (Triglyzeride mit langkettigen Fettsäuren) und/oder einer „normalen Mahlzeit” appliziert werden. Die Frage erhebt sich, wie kleine Mengen von Vitamin D, die üblicherweise in der Nahrung vorkommen, resorbiert werden und ob hier ein „aktiver Prozess” eine Rolle spielt. Zellkultur-Experimente weisen darauf hin, dass Vitamin D3 u. a. über die gleichen komplexen und eng kontrollierten Mechanismen aktiv (Prozess „zweiter Ordnung”) in Enterozyten aufgenommen werden kann wie z. B. Cholesterin. Hier spielt u. a. das Rezeptor-Protein für Ezetimibe, NPC1L1, eine Rolle. In Europa besteht ein Nord-Süd-Gradient für das Apolipoprotein E Epsilon 4 Allel (30 % in Finnland und etwa 5 % um das Mittelmeer). Dieser Genotyp wurde offensichtlich im Norden selektiert, um mehr Vitamin D3 aus der Nahrung aufzunehmen. Eine klare Assoziation höherer Spiegel von Serum-25-(OH)-Vitamin D mit diesem Allel wurde belegt und in „knock-in”-Mäusen bestätigt. In einigen Studien wurde eine Assoziation von hohen Serumspiegeln von Calcidiol mit Übersterblichkeit gefunden. Ob der (zu Alzheimer und erhöhter kardiovaskulärer Mortalität disponierende) Genotyp Apolipoprotein E Epsilon 4 hier eine Rolle spielt, ist bislang nicht erforscht. Für Mutationen im Enzym Delta-7-Dehydrocholesterin-Reduktase wurde ebenso ein Nord-Süd-Gradient gefunden. Dies weist ebenfalls auf evolutionäre Adaption der Vitamin-D3-Synthese in der Haut hin.

 
  • References

  • 1 Mawer EB, Backhouse J, Holman CA. et al. The distribution and storage of vitamin D and its metabolites in human tissues. Clin Sci 1972; 43 (03) 413-431.
  • 2 Krawitt EL, Grundman MJ, Mawer EB. Absorption, hydroxylation, and excretion of vitamin D3 in primary biliary cirrhosis. Lancet 1977; 02 8051 1246-1249.
  • 3 Thompson GR, Lewis B, Booth CC. Absorption of vitamin D3-3H in control subjects and patients with intestinal malabsorption. J Clin Invest 1966; 45 (01) 94-102.
  • 4 Homberg I, Aksenes L, Berlin T. et al. Absorption of a pharmacological dose of vitamin D3 from two different lipid vehicles in man: comparison of peanut oil and a medium chain triglyceride. Biopharm Drug Dispos 1990; 11 (09) 807-815.
  • 5 Denker AE, Lazarus N, Porras A. et al. Bioavailability of Alendronate and Vitamin D3 in an Alendronate/ Vitamin D3 Combination Tablet. The Journal of Clinical Pharmacology. 2010 doi: 10.1177/ 0091270010382010.
  • 6 Bosner MS, Lange LG, Stenson WF, Ostlund RE. Percent cholesterol absorption in normal women and men quantified with dual stable isotopic tracers and negative ion mass spectrometry. J Lipid Res 1999; 40 (02) 302-308.
  • 7 Masson CJ, Plat J, Mensink RP. et al. Fatty acid-and cholesterol transporter protein expression along the human intestinal tract. PLoS ONE 2010; 05 (04) e10380.
  • 8 Binkley N, Gemar D, Engelke J. et al. Evaluation of ergocalciferol or cholecalciferol dosing, 1,600 IU daily or 50,000 IU monthly in older adults. J Clin Endocrinol Metab 2011; 96 (04) 981-988.
  • 9 Russo S, Carlucci L, Cipriani C. et al. Metabolic Changes Following 500 µg Monthly Administration of Calcidiol: A Study in Normal Females. Calcif Tissue Int 2011; 89 (03) 252-257.
  • 10 Barger-Lux MJ, Heaney RP, Dowell S. et al. Vitamin D and its major metabolites: serum levels after graded oral dosing in healthy men. Osteoporos Int 1998; 08 (03) 222-230.
  • 11 Vieth R. Presystemic 24-hydroxylation of oral 25-hydroxyvitamin D3 in rats. J. Bone Miner Res 1990; 05 (11) 1177-1182.
  • 12 Menegaz D, Mizwicki MT, Barrientos-Duran A. et al. Vitamin D Receptor (VDR) Regulation of Voltage-Gated Chloride Channels by Ligands Preferring a VDR-Alternative Pocket (VDR-AP). Molecular endocrinology (Baltimore, Md). 2011 June 09.
  • 13 Lou Y, Molnár F, Peräkylä M. et al. 25-Hydroxyvitamin D(3) is an agonistic vitamin D receptor ligand. J Steroid Biochem Mol Biol 2010; 118 (03) 162-170.
  • 14 Glossmann HH. Are all steaks created equal?. Public Health Nutr 2011; 14 (06) 1128.
  • 15 Chun R, Gacad MA, Hewison M, Adams JS. Adenosine 5’-triphosphate-dependent vitamin D sterol binding to heat shock protein-70 chaperones. Endocrinology 2005; 146 (12) 5540-5544.
  • 16 Purchas R, Zou M, Pearce P, Jackson F. Concentrations of vitamin D3 and 25-hydroxyvitamin D3 in raw and cooked New Zealand beef and lamb. Journal of Food Composition and Analysis 2007; 20 (02) 90-98.
  • 17 Jia L, Betters JL, Yu L. Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu Rev Physiol 2011; 73: 239-259.
  • 18 Reboul E, Goncalves A, Comera C. et al. Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res 2011; 55 (05) 691-702.
  • 19 Goncalves A, Gleize B, Bott R. et al. Phytosterols can impair vitamin D intestinal absorption in vitro and in mice. Mol Nutr Food Res. 2011 doi:10.1002/mnfr.201100055.
  • 20 Weinglass AB, Köhler MG, Nketiah EO. et al. Madin-Darby canine kidney II cells: a pharmacologically validated system for NPC1L1-mediated cholesterol uptake. Mol Pharmacol 2008; 73 (04) 1072-1084.
  • 21 Kwon HJ, Palnitkar M, Deisenhofer J. The structure of the NPC1L1 N-terminal domain in a closed conformation. PLoS ONE 2011; 06 (04) e18722.
  • 22 Zhang J, Ge L, Qi W. et al. The N-terminal Domain of NPC1L1 Protein Binds Cholesterol and Plays Essential Roles in Cholesterol Uptake. J Biol Chem 2011; 286 (28) 25088-25097.
  • 23 Turley SD. The role of Niemann-Pick C1-Like 1 (NPC1L1) in intestinal sterol absorption. Journal of clinical lipidology 2008; 02 (02) S20-S28.
  • 24 Gylling H, Miettinen TA. Inheritance of cholesterol metabolism of probands with high or low cholesterol absorption. J. Lipid Res 2002; 43 (09) 1472-1476.
  • 25 Nunes VS, Leança CC, Panzoldo NB. et al. HDL-C concentration is related to markers of absorption and of cholesterol synthesis: Study in subjects with low vs. high HDL-C. Clin Chim Acta 2011; 412 1-2 176-180.
  • 26 Jorde R, Grimnes G. Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Progress in lipid research 2011; 50 (04) 303-312.
  • 27 Wang TJ, Zhang F, Richards JB. et al. Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010; 376 9736 180-188.
  • 28 Porter FD, Herman GE. Malformation syndromes caused by disorders of cholesterol synthesis. The Journal of Lipid Research 2010; 52 (01) 6-34.
  • 29 Gerdes LU. The common polymorphism of apolipoprotein E: geographical aspects and new pathophysiological relations. Clin Chem Lab Med 2003; 41 (05) 628-631.
  • 30 Eisenberg DTA, Kuzawa CW, Hayes MG. Worldwide allele frequencies of the human apolipoprotein E gene: climate, local adaptations, and evolutionary history. Am J Phys Anthropol 2010; 143 (01) 100-111.
  • 31 Huebbe P, Nebel A, Siegert S. et al. APOE {varepsilon}4 is associated with higher vitamin D levels in targeted replacement mice and humans. FASEB J 2011; 25 (09) 3262-3270 Epub 2011 Jun 9.
  • 32 Bijlsma MF, Spek CA, Zivkovic D. et al. Repression of smoothened by patched-dependent (pro-)vitamin D3 secretion. PLoS Biol 2006; 04 (08) e232.
  • 33 Bischoff-Ferarri HA, Dawson-Hughes B, Stöcklin E. et al. Oral supplementation with 25(OH)D(3) versus vitamin D(3): effects of 25(OH)D levels, lower extremity function, blood pressure and markers of innate immunity. J Bone Miner Res. 2011 Oct 25. doi: 10.1002/jbmr.551.