Osteologie 2012; 21(02): 88-93
DOI: 10.1055/s-0037-1621673
Original- und Übersichtsarbeiten
Schattauer GmbH

Körperliches Training zur Frakturprophylaxe beim älteren Menschen

Eine systematische Übersicht über Evidenzen und Limitationen aktueller StudienPhysical exercise and prevention of fractures in elderly subjectsevidences and limitations of current studies
W. Kemmler
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg
,
S. v. Stengel
1   Institut für Medizinische Physik, Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

eingereicht: 29 June 2011

angenommen nach Revision: 07 September 2011

Publication Date:
04 January 2018 (online)

Zusammenfassung

Osteoporose-induzierte Frakturen sind ein zentrales Problem unserer alternden Gesellschaft. Große epidemiologische Untersuchungen zeigen, dass körperliche Aktivität mit einer deutlichen Reduktion (30–50 %) von Hüftfraktur und vertebralen Frakturen einhergehen kann. Aus methodischer Sicht weisen diese Studien aber Limitationen auf, die den klaren Nachweis eines kausalen Zusammenhangs zwischen Aktivität/Sport und Fraktur - reduktion verhindern. Kontrollierte Interventionsstudien mit dem Endpunkt Frakturhäufigkeit liegen aufgrund der nötigen hohen Stichprobenanzahl nur in beschränktem Maße vor. Fasst man die Ergebnisse dieser Untersuchungen zusammen, so zeigt die Mehrzahl der nach Literaturrecherche ausgewählten Studien positive Effekte auf die “overall”- und vertebrale Frakturhäufigkeit. Eine einfache Berechnung ohne Gewichtung zeigt eine signifikante Reduktion der Frakturhäufigkeit für “overall” (RR: 0,51; 95 %-KI: 0,41–0,63) und vertebrale (RR: 0,61; 95 %-KI: 0,44–0,84) Frakturen. Große Interventionsstudien mit klar definierten Trainingsprotokollen und Endpunkten sind dennoch nötig, den Effekt körperlichen Trainings auf das Frakturrisiko evidenzbasiert nachzuweisen.

Summary

Fragility fractures are a major health problem in our aging society. Observational studies showed that a physically active lifestyle is associated with a 30–50 % reduction of vertebral or hip fractures. However, due to high sample sizes only a paucity of controlled exercise studies determined fractures, as yet, causality between sedentary lifestyle and fractures may be potentially confounded by poor health status of the participants in observation studies. Summarizing the result of these rather heterogeneous exercise trials as identified by a systematic review of the literature, the majority of studies determined positive effects of exercise on “overall” or vertebral fractures. Roughly calculated, the corresponding relative risk (rate ratio) for overall fractures was reduced by ≈50 % concerning “overall”(RR: 0.51; 95 %-CI: 0.41–0.63) and ≈40 % for vertebral (RR: 0.61; 95 %-CI: 0.44–0.84) fractures. However, due to problems (i. e. publication bias, suboptimum exercise regimes etc.) that prevent a meaningful interpretation of these data, adequate randomized controlled exercise trails are required to clearly determine the effect of exercise on fracture incidence.

 
  • Literatur

  • 1 Ashburn A, Fazakarley L, Ballinger C. et al. A randomised controlled trial of a home based exercise programme to reduce the risk of falling among people with Parkinson's disease. J Neurol Neurosurg Psychiatry 2007; 78 (07) 678-684.
  • 2 Body JJ, Bergmann P, Boonen S. et al. Evidencebased guidelines for the pharmacological treatment of postmenopausal osteoporosis: a consensus document by the Belgian Bone Club. Osteoporos Int 2010; 21 (10) 1657-1680.
  • 3 Boon RM, Hamlin MJ, Steel GD, Ross JJ. Validation of the New Zealand Physical Activity Questionnaire (NZPAQ-LF) and the International Physical Activity Questionnaire (IPAQ-LF) with accelerometry. Br J Sports Med 2008; 44 (10) 741-746.
  • 4 Ebrahim SB, Thompson PW, Baskaran V, Evans K. Randomized placebo controlled trial of brisk walking in the prevention of postmenopausal osteoporosis. Age and Aging 1997; 26: 252-260.
  • 5 Gillespie LD, Robertson MC, Gillespie WJ. et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev 2009; 2: CD007146.
  • 6 Gregg EW, Pereira MA, Caspersen CJ. Physical activity, falls, and fractures among older adults: a review of the epidemiologic evidence. J Am Geriatr Soc 2000; 48 (08) 883-893.
  • 7 Haussler B, Gothe H, Gol D. et al. Epidemiology, treatment and costs of osteoporosis in Germany–the BoneEVA Study. Osteoporos Int 2007; 18 (01) 77-84.
  • 8 Karlsson MK, Nordqvist A, Karlsson C. Physical activity, muscle function, falls and fractures. Food Nutr Res 2008; 52: 1-7.
  • 9 Kemmler W, von Stengel S.. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician and Sportmedicine 2011; 39 (01) 142-157.
  • 10 Kemmler W, von Stengel S, Bebenek M. et al. Exercise and fractures in postmenopausal women: 12-year results of the Erlangen Fitness and Osteoporosis Prevention Study (EFOPS). Osteoporos Int 2011 May 28. [Epub ahead of print]
  • 11 Kemmler W, von Stengel S, Engelke K, Haberle L, Kalender WA. Exercise effects on bone mineral density, falls, coronary risk factors, and health care costs in older women: the randomized controlled senior fitness and prevention (SEFIP) study. Arch Intern Med 2010; 170 (02) 179-185.
  • 12 Konnopka A, Jerusel N, Konig HH. The health and economic consequences of osteopenia-and osteoporosis-attributable hip fractures in Germany: estimation for 2002 and projection until 2050. Osteoporos Int 2009; 20 (07) 1117-1129.
  • 13 Korpelainen R, Keinanen-Kiukaanniemi S, Heikkinen J. et al. Effects of impact exercise on bone mineral density in elderly women with low BMD: a population based randomized controlled 30-month intervention. Osteoporos Int 2006; 17: 109-118.
  • 14 Korpelainen R, Keinanen-Kiukaanniemi S, Nieminen P. et al. Long-term outcomes of exercise: follow-up of a randomized trial in older women with osteopenia. Arch Intern Med 2010; 170 (17) 1548-1556.
  • 15 Kranke P, Müllenbach R, Schuster F. et al. Systematische Übersichtsarbeiten und Metaanalysen in der klinischen Medizin–Erstellung, Bedeutung, Interpretation sowie Abgrenzung zu klassischen Arbeiten. Kardiotechnik 2009; 2 (02) 41-48.
  • 16 McMurdo ME, Millar AM, Daly F. A randomized controlled trial of fall prevention strategies in old peoples' homes. Gerontology 2000; 46 (02) 83-87.
  • 17 McMurdo ME, Mole PA, Paterson CR. Controlled trial of weight bearing exercise in older women in relation to bone density and falls. BMJ 1997; 314: 569.
  • 18 Moayyeri A. The association between physical activity and osteoporotic fractures: a review of the evidence and implications for future research. Ann Epidemiol 2008; 18 (11) 827-835.
  • 19 Pedersen BK, Saltin B. Evidence for prescribing exercise as a therapy in chronic disease. Scand J Med Sci Sports 2006; 16 (Suppl. 01) 3-63.
  • 20 Preisinger E, Alacamlioglu Y, Pils K. et al. Exercise therapy for osteoporosis: results of a randomised controlled trial. Br J Sports Med 1996; 30 (03) 209-212.
  • 21 Preisinger E, Kerschan-Schindl K, Wober C. et al. The effect of calisthenic home exercises on postmenopausal fractures--a long-term observational study. Maturitas 2001; 40 (01) 61-67.
  • 22 Reginster JY. Antifracture efficacy of currently available therapies for postmenopausal osteoporosis. Drugs 2011; 71 (01) 65-78.
  • 23 Robertson MC, Devlin N, Gardner MM, Campbell AJ. Effectiveness and economic evaluation of a nurse delivered home exercise programme to prevent falls. 1: Randomised controlled trial. BMJ 2001; 322 7288 697-701.
  • 24 Sambrook PN, Cameron ID, Chen JS. et al. Influence of fall related factors and bone strength on fracture risk in the frail elderly. Osteoporos Int 2007; 18 (05) 603-610.
  • 25 Sinaki M, Itoi E, Wahner HW. et al. Stronger back muscles reduce the incidence of vertebral fractures: a prospective 10 year follow-up of postmenopausal women. Bone 2002; 30 (06) 836-841.