Semin Liver Dis 2018; 38(01): 060-065
DOI: 10.1055/s-0037-1621709
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Mucosal-Associated Invariant T Cells in Chronic Inflammatory Liver Disease

Fabian J. Bolte
1   Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland
,
Barbara Rehermann
1   Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, Maryland
› Author Affiliations
Further Information

Publication History

Publication Date:
22 February 2018 (online)

Abstract

The broadening field of microbiome research has led to a substantial reappraisal of the gut–liver axis and its role in chronic liver disease. The liver is a central immunologic organ that is continuously exposed to food and microbial-derived antigens from the gastrointestinal tract. Mucosal-associated invariant T (MAIT) cells are enriched in the human liver and can be activated by inflammatory cytokines and microbial antigens. In chronic inflammatory liver disease, MAIT cells are depleted suggesting an impaired MAIT cell-dependent protection against bacterial infections.

 
  • References

  • 1 Balmer ML, Slack E, de Gottardi A. , et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci Transl Med 2014; 6 (237) 237ra66
  • 2 Heymann F, Tacke F. Immunology in the liver--from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13 (02) 88-110
  • 3 Treiner E, Duban L, Bahram S. , et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 2003; 422 (6928): 164-169
  • 4 Dusseaux M, Martin E, Serriari N. , et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 2011; 117 (04) 1250-1259
  • 5 Franciszkiewicz K, Salou M, Legoux F. , et al. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev 2016; 272 (01) 120-138
  • 6 Leeansyah E, Ganesh A, Quigley MF. , et al. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 2013; 121 (07) 1124-1135
  • 7 Martin E, Treiner E, Duban L. , et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol 2009; 7 (03) e54
  • 8 Jeffery HC, van Wilgenburg B, Kurioka A. , et al. Biliary epithelium and liver B cells exposed to bacteria activate intrahepatic MAIT cells through MR1. J Hepatol 2016; 64 (05) 1118-1127
  • 9 Leeansyah E, Loh L, Nixon DF, Sandberg JK. Acquisition of innate-like microbial reactivity in mucosal tissues during human fetal MAIT-cell development. Nat Commun 2014; 5: 3143
  • 10 Wang H, Hogquist KA. How MAIT cells get their start. Nat Immunol 2016; 17 (11) 1238-1240
  • 11 Savage AK, Constantinides MG, Han J. , et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 2008; 29 (03) 391-403
  • 12 Fergusson JR, Smith KE, Fleming VM. , et al. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Reports 2014; 9 (03) 1075-1088
  • 13 Porcelli S, Yockey CE, Brenner MB, Balk SP. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD4-8- alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain. J Exp Med 1993; 178 (01) 1-16
  • 14 Lantz O, Bendelac A. An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8- T cells in mice and humans. J Exp Med 1994; 180 (03) 1097-1106
  • 15 Reantragoon R, Corbett AJ, Sakala IG. , et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J Exp Med 2013; 210 (11) 2305-2320
  • 16 Kjer-Nielsen L, Patel O, Corbett AJ. , et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 2012; 491 (7426): 717-723
  • 17 Patel O, Kjer-Nielsen L, Le Nours J. , et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat Commun 2013; 4: 2142
  • 18 Le Bourhis L, Martin E, Péguillet I. , et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat Immunol 2010; 11 (08) 701-708
  • 19 Dias J, Leeansyah E, Sandberg JK. Multiple layers of heterogeneity and subset diversity in human MAIT cell responses to distinct microorganisms and to innate cytokines. Proc Natl Acad Sci U S A 2017; 114 (27) E5434-E5443
  • 20 Tang XZ, Jo J, Tan AT. , et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J Immunol 2013; 190 (07) 3142-3152
  • 21 Magalhaes I, Pingris K, Poitou C. , et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 2015; 125 (04) 1752-1762
  • 22 Riegert P, Wanner V, Bahram S. Genomics, isoforms, expression, and phylogeny of the MHC class I-related MR1 gene. J Immunol 1998; 161 (08) 4066-4077
  • 23 Chua WJ, Kim S, Myers N. , et al. Endogenous MHC-related protein 1 is transiently expressed on the plasma membrane in a conformation that activates mucosal-associated invariant T cells. J Immunol 2011; 186 (08) 4744-4750
  • 24 McWilliam HE, Eckle SB, Theodossis A. , et al. The intracellular pathway for the presentation of vitamin B-related antigens by the antigen-presenting molecule MR1. Nat Immunol 2016; 17 (05) 531-537
  • 25 Ussher JE, van Wilgenburg B, Hannaway RF. , et al. TLR signaling in human antigen-presenting cells regulates MR1-dependent activation of MAIT cells. Eur J Immunol 2016; 46 (07) 1600-1614
  • 26 Gold MC, Napier RJ, Lewinsohn DM. MR1-restricted mucosal associated invariant T (MAIT) cells in the immune response to Mycobacterium tuberculosis. Immunol Rev 2015; 264 (01) 154-166
  • 27 Billerbeck E, Kang YH, Walker L. , et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc Natl Acad Sci U S A 2010; 107 (07) 3006-3011
  • 28 Kurioka A, Ussher JE, Cosgrove C. , et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 2015; 8 (02) 429-440
  • 29 Bolte FJ, O'Keefe AC, Webb LM. , et al. Intra-hepatic depletion of mucosal-associated invariant T cells in hepatitis C virus-induced liver inflammation. Gastroenterology 2017; 153 (05) 1392-1403.e2
  • 30 Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunology 2016; 5 (08) e98
  • 31 Grimaldi D, Le Bourhis L, Sauneuf B. , et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med 2014; 40 (02) 192-201
  • 32 Spaan M, Hullegie SJ, Beudeker BJ. , et al. Frequencies of circulating MAIT cells are diminished in chronic HCV, HIV and HCV/HIV co-infection and do not recover during therapy. PLoS One 2016; 11 (07) e0159243
  • 33 Ussher JE, Bilton M, Attwod E. , et al. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur J Immunol 2014; 44 (01) 195-203
  • 34 Takahashi K, Asabe S, Wieland S. , et al. Plasmacytoid dendritic cells sense hepatitis C virus-infected cells, produce interferon, and inhibit infection. Proc Natl Acad Sci U S A 2010; 107 (16) 7431-7436
  • 35 Lau DT, Fish PM, Sinha M, Owen DM, Lemon SM, Gale Jr M. Interferon regulatory factor-3 activation, hepatic interferon-stimulated gene expression, and immune cell infiltration in hepatitis C virus patients. Hepatology 2008; 47 (03) 799-809
  • 36 Serti E, Werner JM, Chattergoon M, Cox AL, Lohmann V, Rehermann B. Monocytes activate natural killer cells via inflammasome-induced interleukin 18 in response to hepatitis C virus replication. Gastroenterology 2014; 147 (01) 209-220.e3
  • 37 Chattergoon MA, Latanich R, Quinn J. , et al. HIV and HCV activate the inflammasome in monocytes and macrophages via endosomal toll-like receptors without induction of type 1 interferon. PLoS Pathog 2014; 10 (05) e1004082
  • 38 Jo J, Tan AT, Ussher JE. , et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog 2014; 10 (06) e1004210
  • 39 van Wilgenburg B, Scherwitzl I, Hutchinson EC. , et al; STOP-HCV consortium. MAIT cells are activated during human viral infections. Nat Commun 2016; 7: 11653
  • 40 Yong YK, Tan HY, Saeidi A. , et al. Decrease of CD69 levels on TCR Vα7.2(+)CD4(+) innate-like lymphocytes is associated with impaired cytotoxic functions in chronic hepatitis B virus-infected patients. Innate Immun 2017; 23 (05) 459-467
  • 41 Barathan M, Mohamed R, Vadivelu J. , et al. Peripheral loss of CD8(+) CD161(++) TCRVα7·2(+) mucosal-associated invariant T cells in chronic hepatitis C virus-infected patients. Eur J Clin Invest 2016; 46 (02) 170-180
  • 42 Hengst J, Strunz B, Deterding K. , et al. Nonreversible MAIT cell-dysfunction in chronic hepatitis C virus infection despite successful interferon-free therapy. Eur J Immunol 2016; 46 (09) 2204-2210
  • 43 Beudeker BJB, van Oord GW, Arends JE. , et al. MAIT-cell frequency and function in blood and liver of HCV mono- and HCV/HIV co-infected patients with advanced fibrosis. Liver Int 2017; . [Epub ahead of print]
  • 44 Cosgrove C, Ussher JE, Rauch A. , et al. Early and nonreversible decrease of CD161++ /MAIT cells in HIV infection. Blood 2013; 121 (06) 951-961
  • 45 Eberhard JM, Kummer S, Hartjen P. , et al. Reduced CD161(+) MAIT cell frequencies in HCV and HIV/HCV co-infection: is the liver the heart of the matter?. J Hepatol 2016; 65 (06) 1261-1263
  • 46 Gérart S, Sibéril S, Martin E. , et al. Human iNKT and MAIT cells exhibit a PLZF-dependent proapoptotic propensity that is counterbalanced by XIAP. Blood 2013; 121 (04) 614-623
  • 47 Shaler CR, Tun-Abraham ME, Skaro AI. , et al. Mucosa-associated invariant T cells infiltrate hepatic metastases in patients with colorectal carcinoma but are rendered dysfunctional within and adjacent to tumor microenvironment. Cancer Immunol Immunother 2017
  • 48 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346 (16) 1221-1231
  • 49 Browning JD, Szczepaniak LS, Dobbins R. , et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40 (06) 1387-1395
  • 50 Kanwal F, Kramer JR, Duan Z, Yu X, White D, El-Serag HB. Trends in the burden of nonalcoholic fatty liver disease in a United States Cohort of Veterans. Clin Gastroenterol Hepatol 2016; 14 (02) 301-8
  • 51 Arrese M, Cabrera D, Kalergis AM, Feldstein AE. Innate immunity and inflammation in NAFLD/NASH. Dig Dis Sci 2016; 61 (05) 1294-1303
  • 52 Serti E, Werner J, Keane M. , et al. Natural killer T cells and mucosal associated invariant T cells share phenotypic and functional alterations in patients with non-alcoholic fatty liver disease. Hepatology 2016; 64: 584A
  • 53 Jalan R, Fernandez J, Wiest R. , et al. Bacterial infections in cirrhosis: a position statement based on the EASL Special Conference 2013. J Hepatol 2014; 60 (06) 1310-1324
  • 54 Hinks TS, Wallington JC, Williams AP, Djukanović R, Staples KJ, Wilkinson TM. Steroid-induced deficiency of mucosal-associated invariant T cells in the chronic obstructive pulmonary disease lung. Implications for nontypeable Haemophilus influenzae infection. Am J Respir Crit Care Med 2016; 194 (10) 1208-1218
  • 55 Serriari NE, Eoche M, Lamotte L. , et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol 2014; 176 (02) 266-274
  • 56 Howson LJ, Salio M, Cerundolo V. MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol 2015; 6: 303