Subscribe to RSS
DOI: 10.1055/s-0037-1622035
Effekt von Ganzkörper-Elektromyostimulation – “A series of studies”
Eine alternative Trainingstechnologie zur muskuloskelettalen Prävention bei älteren MenschenRole of whole body-electromyostimulation – “A series of studies”Publication History
eingereicht:
04 September 2014
angenommen:
10 September 2014
Publication Date:
02 January 2018 (online)
Zusammenfassung
Studienziel
Ziel der TEST-Studienreihe ist es, Effektivität, Applikabilität und Attraktivität der zeiteffektiven Trainingstechnologie Ganzkörper-Elektromyostimulation (WB-EMS) auf muskulo skelettale Risikofaktoren des älteren Menschen zu evaluieren.
Ergebnisse
Grundsätzlich bestätigen alle bisherigen TEST-Untersuchungen den signifikanten und hochrelevanten Einfluss des WB-EMS auf muskuläre Parameter bei trainierten und untrainierten älteren Menschen. Weniger eindeutig ist der Effekt des WB-EMS auf die Knochendichte (BMD). Trotz Auswahl einer Gruppe mit niedriger BMD und geringer Sportaffinität zeigt WB-EMS nur grenzwertig signifikante Effekte für die BMD an der LWS. Bindungskriterien wie Drop-out und Anwesenheit liegen etwas günstiger als bei konventionellen Sportprogrammen, ein Faktor, zu dem der hohe personelle Betreuungs-schlüssel (1 : 2 bis 1 : 4) beiträgt.
Schlussfolgerung
Obwohl WB-EMS nicht als vollwertige Alternative zu komplexen Allroundtrainingsprogrammen zur Frakturprophylaxe gelten kann, ist diese Trainingstechnologie ein vielversprechendes “Tool”, Menschen, die aus verschiedenen Gründen konventionelle Sportangebote nicht durchführen können (oder möchten), zu mehr eigenverantwort licher, muskuloskelettaler Prävention zu animieren.
Summary
Introduction
The most effective strategy to prevent sarcopenia, osteoporosis and related musculo skeletal complaints is a physically active lifestyle, or even more promising, physical exercise. However, due to a variety of reasons the majority of elderly subjects are either unwilling or unable to perform frequent and intense conventional workouts. In this context, Whole-Body-Electromyostimulation (WB-EMS) may be a save, autonomous and efficient option to increase or maintain muscle and bone mass, and to favorably affect fat accumulation.
Objective
Thus, the primary aim of the TEST (Training and Electromyostimulation Trial) study series is to determine the effect of WB-EMS-application on musculoskeletal parameters in trained and untrained subjects, 60 years and older. While TEST I, TEST II and TEST V focus exclusively on body composition with special regard to muscle mass and function, TEST III further addresses Bone Mineral Density (BMD) in a cohort of osteopenic females, 70 years and older, with a low livelong sport affinity.
Results
In summary, WB-EMS showed significant positive effects on muscle mass, strength and power as well as on total and abdominal fat accumulation. With respect to muscle mass and, with some limitation, to muscular function, positive changes generated by WB-EMS were comparable to the effects of conventional resistance exercise training reported for elderly subjects. However, despite the apparently close muscle/ bone interaction the WB-EMS effect on BMD was rather limited. Compared with a slightly active control group the WB-EMS application resulted in borderline significant effects only at the lumbar spine. In this context, the most favorable current composition (i. e. frequency, intensity, type) and application (i. e. active, passive) of WB-EMS to induce bone adaptation have still to be determined. With respect to feasibility, WB-EMS-application was highly accepted by all cohorts tested, which is substantiated by positive attendance, adherence and dropout rates. This, however, may be at least partially related to the exclusivity of this technology.
Conclusion
In summary, considering the good acceptance of this technology by non-sportive elderly cohorts at risk for sarcopenia, obesity, and osteoporosis, WB-EMS should be considered as an efficient, less off-putting option for subjects unwilling or unable to exercise conventionally to improve muscle and bone mass and function.
-
Literatur
- 1 Ades PA. Cardiac rehabilitation and secondary prevention of coronary heart disease. N Engl J Med 2001; 345 (12) 892-902.
- 2 Alberti KG, Zimmet P, Shaw J. Metabolic syndrome - a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med 2006; 23 (05) 469-480.
- 3 Belanger M, Stein RB, Wheeler GD. et al. Electrical stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals?. Arch Phys Med Rehabil 2000; 81 (08) 1090-1098.
- 4 Binder EF, Yarasheski KE, Steger-May K. et al. Effects of progressive resistance training on body composition in frail older adults: results of a randomized, controlled trial. J Gerontol A Biol Sci Med Sci 2005; 60 (11) 1425-1431.
- 5 Borg E, Kaijser L. A comparison between three rating scales for perceived exertion and two different work tests. Scand J Med Sci Sports 2006; 16 (01) 57-69.
- 6 Clark JM, Jelbart M, Rischbieth H. et al. Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 2007; 45 (01) 78-85.
- 7 Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed.. Hillsdale, NJ: Lawrence Earlbaum Associate; 1988
- 8 Dudley-Javoroski S, Shields RK. Dose estimation and surveillance of mechanical loading interventions for bone loss after spinal cord injury. Phys Ther 2008; 88 (03) 387-396.
- 9 Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 1974; 32 (01) 77-97.
- 10 Eser P, de Bruin ED, Telley I. Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 2003; 33 (05) 412-419.
- 11 Ferretti JL, Cointry GR, Capozza RF, Frost HM. Bone mass, bone strength, muscle-bone interactions, osteopenias and osteoporoses. Mech Ageing Dev 2003; 124 (03) 269-279.
- 12 Filipovic A, Kleinoder H, Dormann U, Mester J. Electromyostimulation - a systematic review of the influence of training regimens and stimulation parameters on effectiveness in electromyostimulation training of selected strength parameters. J Strength Cond Res 2011; 25 (11) 3218-3238.
- 13 Heymsfield SB, Smith R, Aulet M. Appendicular Skeletal Muscle Mass: Measurement by DualPhoton Absorptiometry. Am J Clin Nutr 1990; 52: 214-218.
- 14 Kemmler W, Bebenek M, Engelke K, von Stengel S. Impact of whole-body electromyostimulation on body composition in elderly women at risk for sarcopenia: the Training and ElectroStimulation Trial (TEST-III). Age (Dordr) 2014; 36 (01) 395-406.
- 15 Kemmler W, von Stengel S. Trainingshäufigkeit als Erfolgsprädiktor eines körperlichen Trainings zur Osteoporoseprophylaxe. Minimale effektive Dosis der Trainingshäufigkeit für postmenopausale Frauen mit Osteopenie. Osteologie 2013; 22 (01) 32-38.
- 16 Kemmler W, Beeskow C, Pintag R. et al. Umsetzung moderner trainingswissenschaftlicher Erkenntnisse in ein knochenanaboles Training für früh-postmenopausale Frauen - Die Erlanger Fitness und Osteoporose Präventions Studie (EFOPS). Osteologie 2004; 13 (02) 65-77.
- 17 Kemmler W, Birlauf A, von Stengel S. Einfluss von Ganzkörper-Elektromyostimulation auf das Metabolische Syndrom bei älteren Männern mit metabolischem Syndrom. Dtsch Z Sportmed 2010; 61 (05) 117-123.
- 18 Kemmler W, Schliffka R, Mayhew JL, von Stengel S. Effects of Whole-Body-Electromyostimulation on Resting Metabolic Rate, Anthropometric and Neuromuscular Parameters in the Elderly. The Training and ElectroStimulation Trial (TEST). J Strength Cond Res 2010; 24 (07) 1880-1886.
- 19 Kemmler W, von Stengel S. Dose-response effect of exercise frequency on bone mineral density in post-menopausal, osteopenic women. Scand J Med Sci Sports 2014; 24: 526-534.
- 20 Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician and Sportmedicine 2011; 39 (01) 142-157.
- 21 Kemmler W, von Stengel S. Exercise frequency, health risk factors, and diseases of the elderly. Arch Phys Med Rehabil 2013; 94 (11) 2046-2053.
- 22 Kemmler W, Von Stengel S, Bebenek M. Effekte eines Ganzkörper-Elektromyostimulations-Trainings auf die Knochendichte eines Hochrisikokollektivs für Osteopenie. Eine randomisierte Studie mit schlanken und sportlich inaktiven Frauen. Osteologie 2013; 22 (02) 121-128.
- 23 Kemmler W, Von Stengel S, Schwarz J, Mayhew JL. Effect of whole-body electromyostimulation on energy expenditure during exercise. J Strength Cond Res 2012; 26 (01) 240-245.
- 24 Kemmler W, von Stengel S, Bebenek M, Teschler M. Prävalenz von Sarkopenie und Sarcopenic Obesity bei selbstständig lebenden Frauen über dem 70. Lebensjahr. Osteologie 2015; 24: A20
- 25 Lam H, Qin YX. The effects of frequency-dependent dynamic muscle stimulation on inhibition of trabecular bone loss in a disuse model. Bone 2008; 43 (06) 1093-1100.
- 26 Latham NK, Bennett DA, Stretton CM, Anderson CS. Systematic review of progressive resistance strength training in older adults. J Gerontol A Biol Sci Med Sci 2004; 59 (01) 48-61.
- 27 Macaluso A, De Vito G. Muscle strength, power and adaptations to resistance training in older people. Eur J Appl Physiol 2004; 91: 450-472.
- 28 Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a metaanalysis of randomized controlled trials. Age 2011; 34 (06) 1493-1515.
- 29 Marques EA, Mota J, Machado L. et al. Multicomponent training program with weight-bearing exercises elicits favorable bone density, muscle strength, and balance adaptations in older women. Calcif Tissue Int 2011; 88 (02) 117-129.
- 30 Martyn-St MJames, Caroll C. High intensity exercise training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 2006; 17: 1225-1240.
- 31 Mohr T. [Electric stimulation in muscle training of the lower extremities in persons with spinal cord injuries]. Ugeskr Laeger 2000; 162 (15) 2190-2194.
- 32 Nelson ME, Fiatarone MA, Layne JE. et al. Analysis of body-composition techniques and models for detecting change in soft tissue with strength training. Am J Clin Nutr 1996; 63 (05) 678-686.
- 33 Pahmeier I. Bindung an Gesundheitssport [Habilitation]. Bayreuth: Universität Bayreuth. 1999
- 34 Peterson MD, Rhea MR, Sen A, Gordon PM. Resistance exercise for muscular strength in older adults: a meta-analysis. Ageing Res Rev 2010; 09 (03) 226-237.
- 35 Peterson MD, Sen A, Gordon PM. Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 2011; 43 (02) 249-258.
- 36 Qin YX, Lam H, Ferreri S, Rubin C. Dynamic skeletal muscle stimulation and its potential in bone adaptation. J Musculoskelet Neuronal Interact 2010; 10 (01) 12-24.
- 37 Robert-Koch-Institut. Sportliche Aktivität. Wie aktiv sind die Deutschen. Berlin: RKI; 2012
- 38 Rütten A, Abu-Omar K, Lampert T, Ziese T. Körperliche Aktivität. Report. Berlin: Statistisches Bundesamt; 2005
- 39 Speakman JR, Selman C. Physical activity and resting metabolic rate. Proc Nutr Soc 2003; 62: 621-634.
- 40 Stiegler P, Cunliffe A. The role of diet and exercise for the maintenance of fat-free mass and resting metabolic rate during weight loss. Sports Med 2006; 36 (03) 239-262.
- 41 Vatter J, Authenrieth S, Müller S. Betreuungshandbuch EMS. aKarlsruhe: Health an Beauty; 2014
- 42 Vuori I. Exercise and physical health: muscoskeletal health and functional capacities. Research Quarterly for Exercise and Sport 1995; 66: 276-285.
- 43 Wolff I, van Croonenborg JJ, Kemper HC. et al. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in preand postmenopausal women. Osteoporos Int 1999; 09 (01) 1-12.
- 44 Zamboni M, Mazzali G, Fantin F. et al. Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 2008; 18 (05) 388-395.