Osteologie 2015; 24(02): 67-70
DOI: 10.1055/s-0037-1622048
Querschnittlähmung und Osteoporose
Schattauer GmbH

Querschnittlähmung – ein osteologischer Problemfall

Spinal cord injury – an osteological problem
A. Roth
1   Universitätsklinik Leipzig AöR
› Author Affiliations
Further Information

Publication History

eingereicht: 18 August 2014

angenommen: 28 September 2014

Publication Date:
02 January 2018 (online)

Zusammenfassung

Nach Querschnittlähmung setzt rasch ein Verlust der Knochendichte unterhalb der Läsion ein, insbesondere am distalen Femur und an der proximalen Tibia beidseits. Der Knochenabbau, der mehrere Monate bis Jahre anhält und mit der Zeit langsamer verläuft, ist abhängig von der Höhe der Läsion; die Spongiosa ist mehr davon betroffen als die Kortikalis. Parallel zum Knochenverlust kann laborchemisch unter anderem ein Anstieg von Kalzium und Crosslinks im Urin nachgewiesen werden. Die Erkrankung geht mit einem erhöhten Frakturrisiko einher, typischerweise im Bereich des distalen Femurs und der proximalen Tibia. Frakturen können dort bei normalen Aktivitäten des Lebens ohne adäquates Trauma auftreten. Die Frakturhäufigkeit steigt mit dem Zeitintervall nach der Querschnittlähmung. Als Ursachen der Osteoporose bei Querschnitt werden neben der reinen mechanischen Entlastung vielmehr neurogene, vaskuläre und hormonelle Mechanismen diskutiert.

Summary

After spinal cord injury, there is a rapid loss of bone density below the lesion, highest at the distal femur and proximal tibia on both sides. The bone loss depends from the level of the lesion, and the cancellous bone is more affected than the cortex. The rapid initial bone loss lasts for several months to years, thereafter it continues slowly. Biochemically parallel to the bone loss among an increase of calcium and crosslinks in urine can be observed. The disease is associated with an increased risk of fracture, typically in the region of the distal femur and proximal tibia; fractures can occur during normal activities of life without adequate trauma. The fracture incidence increases with the time interval after the paraplegia. As causes of osteoporosis in addition to a pure mechanical relief rather neurogenic, vascular and hormonal mechanisms are discussed.

 
  • Literatur

  • 1 Garland DE, Stewart CA, Adkins RH. et al. Osteoporosis after spinal cord injury. J Orthop Res 1992; 10: 371-378.
  • 2 Bauman WA, Spungen AM, Wang J. et al. Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 1999; 10: 123-127.
  • 3 Wilmet E, Ismail AA, Heilporn A. et al. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 1995; 33: 674-677.
  • 4 Wang YC, Wang YH, Ting-Fang TShih. et al. Sublesional spinal vertebral bone mineral density correlates with neurological level and body mass index in individuals with chronic complete spinal cord injuries. Spine (Phila Pa 1976) 2010; 35: 958-962.
  • 5 Dauty M, Perrouin BVerbe, Maugars Y. et al. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 2000; 27: 305-309.
  • 6 Kaya K, Aybay C, Ozel S. et al. Evaluation of bone mineral density in patients with spinal cord injury. J Spinal Cord Med 2006; 29: 396-401.
  • 7 Garland DE, Adkins RH, Stewart CA. et al. Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am 2001; 83-A: 1195-1200.
  • 8 Biering-Sørensen F, Bohr HH, Schaadt OP. Longitudinal study of bone mineralcontent in the lumbar spine, the forearm and the lower extremities after spinal cord injury. Eur J Clin Invest 1990; 20: 330-335.
  • 9 Demirel G, Yilmaz H, Paker N, Onel S. Osteoporosis after spinal cord injury. Spinal Cord 1998; 36: 822-825.
  • 10 Dudley-Javoroski S, Shields RK. Regional cortical and trabecular bone loss after spinal cord injury. J Rehabil Res Dev 2012; 49: 1365-1376.
  • 11 Giangregorio L, McCartney N. Bone loss and muscle atrophy in spinal cord injury: epidemiology, fracture prediction, and rehabilitation strategies. J Spinal Cord Med 2006; 29: 489-500.
  • 12 Demulder A, Guns M, Ismail A. et al. Increased osteoclast-like cells formation in long-term bone marrow cultures from patients with a spinal cord injury. Calcif Tissue Int 1998; 63: 396-400.
  • 13 Hill EL, Martin RB, Gunther E. et al. Changes in bone in a model of spinal cord injury. J Orthop Res 1993; 11: 537-547.
  • 14 Minaire P, Neunier P, Edouard C. et al. Quantitative histological data on disuse osteoporosis: comparison with biological data. Calcif Tissue Res 1974; 17: 57-73.
  • 15 Maïmoun L, Couret I, Micallef JP. et al. Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 2002; 51: 958-963.
  • 16 Roberts D, Lee W, Cuneo RC. et al. Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 1998; 83: 415-422.
  • 17 Bergmann P, Heilporn A, Schoutens A. et al. Longitudinal study of calcium and bone metabolism in paraplegic patients. Paraplegia 1977; 15: 147-159.
  • 18 Pietschmann P, Pils P, Woloszczuk W. et al. Increased serum osteocalcin levels in patients with paraplegia. Paraplegia 1992; 30: 204-209.
  • 19 Dolbow DR, Gorgey AS, Daniels JA. et al. The effects of spinal cord injury and exercise on bone mass: a literature review. Neuro Rehabilitation 2011; 29: 261-269.
  • 20 Modlesky CM, Majumdar S, Narasimhan A, Dudley GA. Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 2004; 19: 48-55.
  • 21 Maynard FM, Karunas RS, Adkins RH. et al. Management of neuromusculoskeletal systems. In: Stover SL, DeLisa JA, Whiteneck GG. eds. Spinal Cord Injury: Clinical Outcomes from the Model Systems. Gaithersburg. Maryland: Aspen Publishers; 1995: 145-169.
  • 22 Eser P, Frotzler A, Zehnder Y, Denoth J. Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 2005; 86: 498-504.
  • 23 Levi R, Hulting C, Nash MS, Sieger A. The Stockholm spinal cord injury study: Associations between clinical patient characteristics and postacute medical problems. Paraplegia 2001; 33: 585-594.
  • 24 Chen B, Stein A. Osteoporosis in acute spinal cord injury. Top Spinal Cord Inj Rehabil 2003; 09: 26-35.
  • 25 Chen B, Mechanick JI, Nierman DM, Stein A. Combined calcitriol-pamidronate therapy for bone hyperresorption in spinal cord injury. J Spinal Cord Med 2001; 24: 235-240.
  • 26 Mechanick JI, Pomerantz F, Flanagan S. et al. Parathyroid hormone suppression in spinal cord injury patients is associated with the degree of neurologic impairment and not the level of injury. Arch Phys Med Rehabil 1997; 78: 692-696.
  • 27 Alexandre C, Vico L. Pathophysiology of bone loss in disuse osteoporosis. Joint Bone Spine 2011; 78: 572-576.
  • 28 Jiang SD, Dai LY, Jiang LS. Osteoporosis after spinal cord injury. Osteoporos Int 2006; 17: 180-192.
  • 29 Sørensen FB, Bohr H, Schadt O. Bone mineral content of the lumbar spine and lower exrtremities after spinal cord lesion. Paraplegia 1998; 26: 293-301.
  • 30 Levasseur R, Sabatier JP, Potrel-Burgot C. et al. Sympathetic nervous system as transmitter of mechanical loading in bone. Joint Bone Spine 2003; 70: 515-519.
  • 31 Serre CM, Farlay D, Delmas PD, Chenu C. Evidence for a dense and intimateinnervation of the bone tissue, including glutamate-containing fibers. Bone 1999; 25: 623-629.
  • 32 Chantraine A, Nusgens B, Lapiere CM. Bone remodeling during the development of osteoporosis in paraplegia. Calcif Tissue Int 1986; 38: 323-327.
  • 33 Chantraine A, van Ouwenaller C, Hachen HJ, Schinas P. Intra-medullary pressure and intraosseous phlebography in paraplegia. Paraplegia 1979; 17: 391-399.
  • 34 Weiss D. Osteoporosis and spinal cord injury. 2008 http://emedicine.medscape.com/article/322204-overview Letzer Zugriff: 20.07.2014.
  • 35 Claus-Walker J, Carter RE, Compos RJ, Spencer WA. Hypercalcemia in early traumatic quadriplegia. J Chronic Dis 1975; 28: 81-90.
  • 36 Merli GJ, McElwain GE, Adler AG. et al. Immobilization hypercalcemia in acute spinal cord injury treated with etidronate. Arch Intern Med 1984; 144: 1286-1288.
  • 37 Frey-Rindova P, de Bruin ED, Stüssi E. et al. Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 2000; 38: 26-32.
  • 38 Shields RK, Dudley-Javoroski S. Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. J Neurophysiol 2006; 95: 2380-2390.