Osteologie 2015; 24(04): 219-224
DOI: 10.1055/s-0037-1622069
Labordiagnostik bei metabolischen Knochenerkrankungen
Schattauer GmbH

MicroRNAs in der Osteologie

MicroRNAs in bone Overview and clinical significance
M. Ulbing
1   Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
,
B. Obermayer-Pietsch
1   Klinische Abteilung für Endokrinologie und Stoffwechsel, Universitätsklinik für Innere Medizin, Medizinische Universität Graz, Graz, Österreich
› Institutsangaben
Weitere Informationen

Publikationsverlauf

eingereicht: 29. September 2015

angenommen: 05. Oktober 2015

Publikationsdatum:
02. Januar 2018 (online)

Zusammenfassung

MicroRNAs (miRNAs) sind einzelsträngige, nichtkodierende RNA-Elemente, die die Umsetzung von Genen zu Proteinen über die Transkription und Translation beeinflussen können. Durch ihre Bindung an mRNA greifen miRNAs als Regulatoren in die verschiedensten Signalwege im Organismus ein. Dabei beeinflussen miRNAs unterschiedlichste biologische Prozesse, darunter Zelldifferenzierung, Proliferation oder Organ-/Gewe-beentwicklung und sind auch in der Knochenhomöostase wichtig. Sie spielen eine Rolle bei Knochenformation, -resorption, -remodelling und Knochenzelldifferenzierung. Damit sind unterschiedliche Expressionen von miRNA ein wichtiger Pathomechanismus bei osteologischen Erkrankungen wie der Osteoporose, der renalen Osteodystrophie oder von Knochenmalignomen. In dieser Übersichts arbeit werden miRNAs definiert und charakterisiert sowie deren Rollen in der Osteologie und bei osteologischen Erkrankungen dargestellt.

Summary

MicroRNAs are single-stranded, non-coding RNA elements which influence the conversion of information from genes into proteins via their effects on transcription and translation. By binding to mRNA, miRNAs regulate a considerable part of signalling pathways in the organism. MiRNAs interfere with a number of biological processes, among them cell differentiation, proliferation or organ-/ tissue development. MiRNAs are very important during bone homeostasis. They play a role during bone formation, resorption, remodelling and bone cell differentiation. This regulatory function indicates that different expression patterns of miRNAs are important for pathomechanisms in osteological diseases, among them osteoporosis, renal osteodystrophy and malignant bone tumours. This review describes miRNAs and their physiological role in osteology as well as in bone diseases.

 
  • Literatur

  • 1 Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012; 13 (05) 358-369.
  • 2 Chen X, Ba Y, Ma L. et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 (10) 997-1006.
  • 3 Gilad S, Meiri E, Yogev Y. et al. Serum MicroRNAs Are Promising Novel Biomarkers. PLoS One 2008; 03 (09) 7.
  • 4 Ambros V. A uniform system for microRNA annotation. RNA 2003; 09 (03) 277-279.
  • 5 Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12 (12) 861-874.
  • 6 Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11 (09) 597-610.
  • 7 Lee Y, Ahn C, Han J. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425 6956 415-419.
  • 8 Köhler A, Hurt E. Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 2007; 08 (10) 761-773.
  • 9 Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell 2005; 06 (05) 376-385.
  • 10 Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 2009; 136 (04) 642-655.
  • 11 Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15 (08) 509-524.
  • 12 Kim DH, Saetrom P, Snøve O, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U. S. A 2008; 105 (42) 16230-16235.
  • 13 Bernstein E, Kim SY, Carmell MA. et al. Dicer is essential for mouse development. Nat Genet 2003; 35 (03) 215-217.
  • 14 Gaur T, Hussain S, Mudhasani R. et al. Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol 2010; 340 (01) 10-21.
  • 15 Oskowitz AZ, Lu J, Penfornis P. et al. Human multipotent stromal cells from bone marrow and microRNA: Regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci 2008; 105 (47) 18372-18377.
  • 16 Zhang Y, Xie RL, Gordon J. et al. Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. J Biol Chem 2012; 287 (26) 21926-21935.
  • 17 Inose H, Ochi H, Kimura A. et al. A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci U. S. A 2009; 106 (49) 20794-20799.
  • 18 Li Z, Hassan MQ, Jafferji M. et al. Biological functions of miR-29b contribute to positive regulation of osteoblast differentiation. J Biol Chem 2009; 284 (23) 15676-15684.
  • 19 Mizoguchi F, Izu Y, Hayata T. et al. Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 2010; 109: 866-875.
  • 20 Sugatani T, Hruska KA. Impaired micro-RNA pathways diminish osteoclast differentiation and function. J Biol Chem 2009; 284 (07) 4667-4678.
  • 21 Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis. Blood 2011; 117 (13) 3648-3657.
  • 22 Nakasa T, Shibuya H, Nagata Y. et al. The inhibitory effect of microRNA-146a expression on bone destruction in collagen-induced arthritis. Arthritis Rheum 2011; 63 (06) 1582-1590.
  • 23 Li H, Xie H, Liu W. et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Invest 2009; 119 (12) 3666-3677.
  • 24 Wang X, Guo B, Li Q. et al. miR-214 targets ATF4 to inhibit bone formation. Nat Med 2013; 19 (01) 93-100.
  • 25 Seeliger C, Karpinski K, Haug A. et al. Five Freely Circulating miRNAs and Bone Tissue miRNAs are Associated with Osteoporotic Fractures. J Bone Miner Res 2014; 29 (08) 1718-1728.
  • 26 Weilner S, Skalicky S, Salzer B. et al. Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 2015; 79: 43-51.
  • 27 Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008; 09 (05) 402-412.
  • 28 van der Deen M, Taipaleenmäki H, Zhang Y. et al. MicroRNA-34c inversely couples the biological functions of the runt-related transcription factor RUNX2 and the tumor suppressor p53 in osteosarcoma. J Biol Chem 2013; 288 (29) 21307-21319 Jul. 2013..
  • 29 Ulbing M, Kirsch A, Schweighofer N. et al. Specific MicroRNAs as Biomarkers in CKD Patients at High Risk for Calcifications and ROD?. IBMS BoneKEy. 2015
  • 30 Kapinas K, Kessler C, Ricks T. et al. miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 2010; 285 (33) 25221-25231.
  • 31 Wang FS, Chuang PC, Chung PC. et al. MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis Rheum 2013; 65 (06) 1530-1540.
  • 32 Tang W, Zhu Y, Gao J. et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer 2014; 110 (02) 450-458.