Tierarztl Prax Ausg K Kleintiere Heimtiere 2008; 36(02): 1-12
DOI: 10.1055/s-0038-1622663
Dog/Cat
Schattauer GmbH

Magnetic resonance angiography: A comparison of techniques and applications in dogs and humans

I. Foltin
1   Department of Surgery, Veterinary Faculty of the Ludwig-Maximilians-University of Munich
2   Radiology Clinic, Prof. Dr. K. Rieden/Dr. A. Stoye, Heidelberg
,
A. Brühschwein
1   Department of Surgery, Veterinary Faculty of the Ludwig-Maximilians-University of Munich
,
K. Rieden
2   Radiology Clinic, Prof. Dr. K. Rieden/Dr. A. Stoye, Heidelberg
,
U. Matis
1   Department of Surgery, Veterinary Faculty of the Ludwig-Maximilians-University of Munich
› Author Affiliations
Further Information

Publication History

Submitted:10 November 2007

accepted:17 March 2008

Publication Date:
05 January 2018 (online)

Summary

Magnetic resonance angiography (MRA) is a non-invasive imaging technique for visualising blood vessels and blood flow. The first half of this article is a literature review of the three basic MRA techniques: Timeof-flight (TOF) angiography, phase-contrast angiography and contrast-enhanced angiography. Physical principles, technical requirements, investigated parameters, advantages and disadvantages of the methods, and the correlation between application of contrast medium and time of examination are discussed. Subsequent processing of the MR images using “maximum intensity projection“ (MIP) provided a threedimensional image of the vascular architecture and improved the anatomical orientation; however, MIP was shown to sometimes cause additional diagnostic pitfalls. Therefore, the original slices should always be consulted in addition to the MIP. The second half of this article describes the application of the different MRA methods in veterinary medicine and compares the results with MRA in human medicine. A total of 15 dogs with clinical signs that warranted further work-up using MRA, and 20 human patients requiring MRA, were included in the study. Five healthy dogs served as controls. The vascular architecture in dogs was compared with that in human patients, and the images were scrutinized for lesions that corresponded to the clinical signs. An abnormal vascular architecture was identified in eight dogs with a portosystemic shunt, which allowed targeted surgical intervention. Aneurysms, thrombi and stenoses were seen in images from human patients. Comparison of the vascular architecture in humans and dogs allowed the anatomic identification and evaluation of the visualised blood vessels in the dog. Magnetic resonance imaging is still a relatively new technique in veterinary medicine and appears to be a promising diagnostic tool for a number of disorders as the availability of high-field MRI in veterinary clinics increases.

 
  • References

  • 1 Birchard SJ, Biller DS, Johnson SE. Differentiation of intrahepatic versus extrahepatic portosystemic shunts in dogs using positive-contrast porto - graphy. J Am Anim Hosp Assoc 1989; 25: 13-17.
  • 2 Bongartz G, Boos M, Winter K. et al. MR-Angiographie der Thorakalgefäße. Radiologe 1997; 37: 529-538.
  • 3 Dahme E, Weiss E. Grundriss der speziellen pathologischen Anatomie der Haustiere. Stuttgart: Enke; 1999: 27-44.
  • 4 Daniel GB, Bright R, Ollis P, Shull R. Per rectal portal scintigraphy using 99mTechnetium pertechnetate to diagnose portosystemic shunts in dogs and cats. J Vet Intern Med 1991; 5: 23-27.
  • 5 D’Anjou MA, Penninck D, Cornejo L, Pibarot P. Ultrasonographic diagnosis of portosystemic shunting in dogs and cats. Vet Radiol Ultrasound 2004; 45 (05) 424-437.
  • 6 Deutsches Ärzteblatt: Bekanntmachung aus der UAW-Datenbank, Jg. 104, Heft 16, 20.04.2007
  • 7 Dumoulin CL, Hart HR. Magnetic resonance angiography. Radiology 1986; 16: 717-720.
  • 8 Dumoulin CL, Yucel EK, Vock P. et al. Two- and three-dimensional phase contrast MR angiography of the abdomen. J Comput Assist Tomogr 1990; 14: 779-784.
  • 9 Edelman RR, Wentz KU, Mattle HP. et al. Intracerebral arteriovenous malformations: evaluation with selective MR angiography and venography. Radiology 1989; 173: 831-837.
  • 10 Felber S, Auer A, Schmutzhard E. Magnetresonanz-Angiographie bei entzündlichen Hirnerkrankungen. Radiologe 2000; 40: 1077-1089.
  • 11 Foltin I. Kernspintomographische Kriterien für Hüftgelenksdysplasie, Kox - arthrose und Morbus Legg-Calvé-Perthes beim Hund. Diss med vet, Mün - chen 2002; 36-37.
  • 12 Frank P, Mahaffey M, Egger C, Cornell KK. Helical computed tomographic portography in ten normal dogs and ten dogs with a portosystemic shunt. Vet Radiol Ultrasound 2003; 44 (04) 392-400.
  • 13 Goyen M, Heuser L. Gefäßdarstellung mittels Magnetresonanz-Angiographie (MRA). Z Ärztl Fortb Qualitätssich 1998; 92: 491-493.
  • 14 Gottschalk S, Gaebel C, Haendler G. et al. Kontrastmittelgestnützte 3D-MRAngiographie (CE-MRA) bei intrakraniellen Stenosen und Aneurysmen. Fortschr Röntgenstr 2002; 174: 704-713.
  • 15 Hany TF, Debatin JF, Leung DA, Pfammatter T. Evaluation of the aortoiliac and renal arteries: Comparison of breath-hold, contrast-enhanced, three-dimensional MR-angiography with conventional catheter angiography. Radio - logy 1997; 204 (02) 357-362.
  • 16 Hany TF, McKinnon GC, Leung DA. et al. Optimization at contrast timing for breathhold three-dimensional MR angiography. J Magn Reson Imaging 1997; 7 (03) 551-556.
  • 17 Heiland S, Hartmann M. et al. MR-Angiographie: Technische Grundlagen und Anwendungen in der Diagnostik Neurologischer Erkrankungen. Fortschr Röntgenstr 2001; 173: 677-685.
  • 18 Hilfiker PR, Herfkens RJ, Heiss SG. et al. Partial fat-sat-urated contrast enhanced three-dimensional MR angiography compared with non-fat-saturated and conventional fat-saturated MR angiography. Radiology 2000; 216: 298-303.
  • 19 Ho KY, De Haan MW, Kessels AG. et al. Peripheral vascular tree stenoses: detection with subtracted and nonsubtracted MR angiography. Radiology 1998; 206: 673-681.
  • 20 Holt DE, Schelling CG, Saunders HM, Orsher RJ. Correlation of ultrasonographic findings with surgical, portographic, and necropsy findings in dogs and cats with portosystemic shunts: 63 cases (1987-1993). J Am Vet Med Assoc 1995; 207: 1190-1193.
  • 21 Isoda H, Ramsey RG. et al. MR angiography of aneurysm models of various shapes and neck sizes. AJNR 1997; 18: 1463-1472.
  • 22 Koblik PD, Hornof WJ. Transcolonic sodium pertechnetate Tc-99m scintigraphy for diagnosis of macrovascular portosystemic shunts in dogs, cats, and potbellied pigs: 176 cases (1988-1992). J Am Vet Med Assoc 1995; 207: 729-733.
  • 23 Koblik PD, Komtebedde J, Yen CK, Hornof WJ. Use of transcolonic 99mTechnetium pertechnetate as a screening test for portosystemic shunts in dogs. J Am Vet Med Assoc 1990; 196: 925-930.
  • 24 Krappel FA, Bauer E, Harland U. Kann die Time-of-Flight-Angiographie in der MRT die präoperative Duplex- und Doppler-Untersuchung der Arteria carotis ersetzen? Ergebnisse eines prospektiven Vergleichs mit Literatur - übersicht. Z Orthop Ihre Grenzgeb 2002; 140 (04) 435-439.
  • 25 Lamb CR. Ultrasonographic diagnosis of congenital portosystemic shunts in dogs: results of a prospective study. Vet Radiol 1996; 37: 281-288.
  • 26 Laub G. Grundlagen der MR-Angiographie. Der Radiologe 1994; 34: 416-422.
  • 27 Laub G, Kaiser WA. MR angiography with gradient motion refocussing. J Comput Assist Tomog 1988; 12: 377-382.
  • 28 Lewin JS, Laub G. Intracranial MR angiography: a direct comparison of three time of flight techniques. Am J Neuroradiol 1991; 12: 1133-1139.
  • 29 Miller MW, Fossum TW, Bahr AM. Transvenous retrograde portography for identification and characterization of portosystemic shunts in dogs. J Am Vet Med Assoc 2002; 221 (11) 1586-90. 1574;
  • 30 Moran PR, Moran RA, Karstaedt N. Verification and evaluation of internal flow and motion. True magnetic resonance Imaging by the phase gradient modulation method. Radiology 1985; 154: 433-441.
  • 31 Morandi F, Cole RC, Tobias KM, Berry CR, Avenelli J, Daniel GC. Use of 99mTCO4 trans-splenic portal scintygraphy for diagnosis of portosystemic shunts in 28 dogs. Vet Radiol & Ultrasound 2005; (02) 46: 153-161.
  • 32 Nayler GL, Firmin DN, Longmore DB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986; 10: 715-722.
  • 33 Niendorf HP, Balzer T. Kontrastmittel. In: Magnetresonanztomographie Reiser M, Semmler W. Hrsg Berlin, Heidelberg: Springer; 1997: 95-113.
  • 34 Petersen D, Klose U. Indikationen zur Kontrastmittelgabe bei der MR-An - gio graphie der Hirngefäße. Radiologe 1997; 37: 508-514.
  • 35 Reimer P, Boos M, Denk S, Vosshenrich R. MRA der Becken- und Beinarterien. Radiologie up2date 2002; 4: 347-363.
  • 36 Salwei RM, O’Brien RT, Matheson JS. Use of contrast harmonic ultrasound for the diagnosis of congenital portosystemic shunts in three dogs. Vet Radiol Ultrasound 2003; 44 (03) 301-305.
  • 37 Santilli RA, Gerboni G. Diagnostic imaging of congenital porto-systemic shunts in dogs and cats: a review. Vet J 2003; 166 (01) 7-18.
  • 38 Schmidt S, Suter PF. Angiography of the hepatic and portal venous system in the dog and cat: an investigative method. Vet Radiol 1980; 21: 57-77.
  • 39 Schuhmann D, Seeman M, Gebicke K. et al. Computergestützte Diagnostik basierend auf computergestützter Bildanalyse und 3D-Visualisierungen. Der Radiologe 1998; 38: 799-809.
  • 40 Seguin B, Tobias KM, Gavin PR, Tucker RL. Use of magnetic resonance angiography for diagnosis of portosystemic shunts in dogs. Vet Radiol & Ultrasound 1999; 40: 251-258.
  • 41 Semmler W, Laniado M, Felix R. Der Einfluss von Kontrastmitteln auf die Grauabstufung in der magnetischen Resonanztomographie. Fortschr Röntgenstr 1985; 142: 123-130.
  • 42 Siegelmann ES, Charafeddine R, Stolpen AH, Axel L. Supression of intra - vascular signal on fat-saturated contrast-enhanced thoracic MR arteriograms. Radiology 2000; 217: 115-118.
  • 43 Shin H, Stamm G. Grundlegende Techniken des Image Processing in der Schnittbilddiagnostik Radiologie up2date. 2002; 3: 283-302.
  • 44 Stehling MK, Niedermeyer M, Laub G. Kontrastmittelverstärkte Magnet - resonanztomographie. Theorie, Technik und praktische Durchführung. Radiologe 1997; 37: 501-517.
  • 45 Stringer WA. MRA image production and display. Clin Neurosci 1997; 4: 110-116.
  • 46 Struffert T, Reith W. Wertigkeit der MR-Angiographie bei der Darstellung intrakranieller Aneurysmen. Der Radiologe 2002; 42 (11) 898-904.
  • 47 Suter PF. Portal vein anomalies in the dog: their angiographic diagnosis. J Am Radiol SOC 1975; 16: 84-97.
  • 48 Thompson MS, Graham JP, Mariani CL. Diagnosis of a portoazygous shunt using helical computed tomography angiography. Vet Radiol Ultrasound 2003; 44: 287-291.
  • 49 Vosshenrich R, Fischer U, Funke M, Grabbe E. 2D-Time-of-Flight-MR-Angiographie der peripheren Gefäße. Experimentelle und klinische Studien zur Wertigkeit der Methode bei AVK. Fortschr Röntgenstr 1996; 164 (01) 25-30.
  • 50 Vosshenrich R, Fischer U, Grabbe E. MR-Angiographie bei portaler Hypertension. Der Radiologe 2001; 41 (10) 868-876.
  • 51 Wehrli FW, Macfall JR, Shutts D. et al. Mechanism of contrast in NMR imaging. J Comput Assist Tomogr 1984; 8: 369-380.
  • 52 Weishaupt D, Köchli VD, Marincek B. Wie funktioniert MRI? Eine Einführung in Physik und Funktionsweise der Magnetresonanzbildgebung. Berlin: Springer; 2003
  • 53 Wrigley RH, Konde LJ, Park LD, Lebel JL. Ultrasonographic diagnosis of portocaval shunts in young dogs. J Am Vet Med Assoc 1987; 191: 421-424.
  • 54 Wrigley RH, Park RD, Konde LJ, Lebel JL. Subtraction portal venography. Vet Radiol 1987; 28: 208-212.
  • 55 Zwingenberger AL, Schwarz TS. Dual-phase CT angiography of the normal canine portal and hepatic vasculature. Vet Radiol Ultrasound 2004; 45: 117-124.
  • 56 Zwingenberger AL, Schwarz T, Saunders HM. Helical CT angiography of canine portosystemic shunts. Vet Radiol Ultrasound 2005; 46: 1-6.