Tierarztl Prax Ausg K Kleintiere Heimtiere 2010; 38(02): 61-69
DOI: 10.1055/s-0038-1622834
Originalartikel
Schattauer GmbH

Kniegelenkstabilität nach lateraler Fadenzügelung mit Ethibond Excel®: frühzeitige Destabilisierung nach passiver Gelenkbewegung

Stifle stability after lateral suture stabilisation using Ethibond Excel®: early destabilisation following cyclic passive joint motion
P. Böttcher
1   Klinik für Kleintiere (Direktor: Prof. Dr. G. Oechtering) der Universität Leipzig
,
C. Fischer
1   Klinik für Kleintiere (Direktor: Prof. Dr. G. Oechtering) der Universität Leipzig
,
H. Werner
1   Klinik für Kleintiere (Direktor: Prof. Dr. G. Oechtering) der Universität Leipzig
,
V. Grevel
1   Klinik für Kleintiere (Direktor: Prof. Dr. G. Oechtering) der Universität Leipzig
,
G. Oechtering
1   Klinik für Kleintiere (Direktor: Prof. Dr. G. Oechtering) der Universität Leipzig
› Author Affiliations
Further Information

Publication History

Eingegangen: 01 May 2009

Akzeptiert: 29 November 2009

Publication Date:
05 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: 1) Bestimmung der kraniokaudalen Kniegelenkstabilität nach lateraler Fadenzügelung und passiver Kniegelenkbewegung. 2) Bestimmung der Schlaufenspannung nach Knotung. Material und Methoden: Die kraniokaudale Kniegelenkstabilität (KKStab) wurde anhand von lateromedialen Röntgenaufnahmen an zehn rechten Kniegelenken orthopädisch gesunder Hunde (> 20 kg KM) ex vivo bestimmt. Die Messung erfolgte am gesunden Gelenk nach Durchtrennung des vorderen Kreuzbandes und nach lateraler Ethibondfadenzügelung. Anschließend wurde das Kniegelenk 350 Mal passiv bewegt und die KKStab nach 50, 100, 250 und 350 Bewegungszyklen gemessen. Des Weiteren wurden sieben Ethibondfadenschlaufen an einer Materialprüfmaschine geknüpft und die Spannung in der Schlaufe nach dem ersten (FMax) und nach dem letzten Knoten (FEnd) ge messen. Ergebnisse: Die KKStab nach Rekonstruktion betrug 3,7 mm und war um 2,7 mm größer als bei intaktem Kreuzband. Bereits 250 passive Bewegungszyklen bewirkten eine signifikante Destabilisierung um 1,5 mm. FMax lag bei 133 N und fiel auf 6 N (FEnd) nach dem fünften Knoten. Schlussfolgerung: Die laterale Fadenzügelung mit Ethibondfäden und Anlegen von fünf einfachen Knoten ermöglicht es nicht, die physiologische Gelenkstabilität herzustellen. Bereits wenige Bewegungszyklen bewirken eine signifikante weitere Destabilisierung. Einer der Gründe für das unbefriedigende Ergebnis ist die hier angewendete Knotentechnik, die es nicht erlaubt, die nötige Fadenspannung zu konservieren. Klinische Relevanz: Die Anwendung von Ethibond in Kombination mit einfacher Knotentechnik scheint für die Durchführung einer lateralen Fadenzügelung nicht geeignet.

Summary

Objective: 1) To report cranio-caudal stifle stability (ccStab) following lateral suture stabilisation (LSS) and passive joint motion. 2) To report tension within the suture following knotting. Material and methods: ccStab was measured in vitro on latero-medial radiographs in 10 stifles of orthopaedically sound dogs (> 20 kg BW). ccStab was assessed in the intact joint, after transection of the cranial cruciate ligament and following LSS using a multi strand Ethibond loop and clamped square knots, as well as after 50, 100, 250 and 350 cycles of passive joint motion. Tension within seven suture loops was measured using a material testing machine. Tension was measured after the first (FMax) and last knot (FEnd). Results: ccStab following LSS was 3.7 mm und was greater by 2.7 mm than with intact cruciate ligament. Already 250 passive cycles of passive joint motion induced significant destabilisation by 1.5 mm. FMax was 133 N und dropped to 6 N (FEnd) after completion of the last knot. Conclusion: LSS using Ethibond and clamped square knots do not allow for restoration of physiological stifle stability. Already few cycles of passive joint motion further destabilise the joint. One of the reasons for these disappointing results is the method of suture fixation as clamped square knots did not allow for conservation of initial loop tension. Clinical relevance: LSS using a multi strand Ethibond loop and clamped square knots should be avoided.

 
  • Literatur

  • 1 Anderson CC 3rd, Tomlinson JL, Daly WR, Carson WL, Payne JT, Wagner-Mann CC. Biomechanical evaluation of a crimp clamp system for loop fixa -tion of monofilament nylon leader material used for stabilization of the canine stifle joint. Vet Surg 1998; 27: 533-539.
  • 2 Aragon CL, Budsberg SC. Applications of evidence-based medicine: cranial cruciate ligament injury repair in the dog. Vet Surg 2005; 34: 93-98.
  • 3 Arnoczky SP, Tarvin GB, Marshall JL, Saltzman B. The over-the-top procedure: a technique for anterior cruciate ligament substitution in the dog. J Am Anim Hosp Assoc 1979; 15: 283-290.
  • 4 Blythe A, Tasker T, Zioupos P. ACL graft constructs: In-vitro fatigue testing highlights the occurrence of irrecoverable lengthening and the need for adequate (pre)conditioning to avert the recurrence of knee instability. Technol Health Care 2006; 14: 335-347.
  • 5 Brinker WO, Piermattei DL, Flo GL. Rupture of the cranial cruciate ligament. In: Handbook of Small Animal Orthopedics and Fracture Repair 4th ed.. Philadelphia: Saunders; 2006: 582-607.
  • 6 Caporn T, Roe SC. Biomechanical evaluation of the suitability of monofilament nylon fishing and leader line for extra-articular stabilisation of the canine cruciate-deficient stifle. Vet Comp Orthop Traumatol 1996; 9: 126-133.
  • 7 Casale SA, McCarthy RJ. Complications associated with lateral fabellotibial suture surgery for cranial cruciate ligament injury in dogs: 363 cases (1997-2005). J Am Vet Med Assoc 2009; 234: 229-235.
  • 8 Conzemius MG. Stabilization of the CCL deficient knee. Do we need it?. In: Proceedings of the 2007 ACVS Veterinary Symposium. Chicago, USA: 2007: 332
  • 9 DeAngelis M, Lau RE. A lateral retinacular imbrication technique for the surgical correction of anterior cruciate ligament rupture in the dog. J Am Vet Med Assoc 1970; 157: 79-84.
  • 10 Dobrin PB. Surgical manipulation and the tensile strength of polypropylene sutures. Arch Surg 1989; 124: 665-668.
  • 11 Fischer C, Cherres M, Grevel V, Oechtering G, Böttcher P. Effects of attachment site and joint angle at time of graft fixation on the tension in the lateral suture for stabilization of the cranial cruciate ligament deficient stifle in dogs. Vet Surg (in press)
  • 12 Flo GL. Modification of the lateral retinacular imbrication technique for stabilizing cruciate ligament injuries. J Am Vet Med Assoc 1975; 11: 570-576.
  • 13 Garner M, Altman D. Confidence intervals rather than P values. In: Statistics with Confidence 2nd ed.. Altman D, Machin D, Bryant T, Gardner M. eds London: BMJ Books; 2005: 15-27.
  • 14 Guénégo L, Zahra A, Madelénat A, Gautier R, Marcellin-Little DJ, Hulse D. Cranial cruciate ligament rupture in large and giant dogs. A retrospective evaluation of a modified lateral extracapsular stabilization. Vet Comp Orthop Traumatol 2007; 20: 43-50.
  • 15 Harper TA, Martin RA, Ward DL, Grant JW. An in vitro study to determine the effectiveness of a patellar ligament/fascia lata graft and new tibial suture anchor points for extracapsular stabilization of the cranial cruciate ligament-deficient stifle in the dog. Vet Surg 2004; 33: 531-541.
  • 16 Huber DJ, Egger EL, James SP. The effect of knotting method on the structural properties of large diameter nonabsorbable monofilament sutures. Vet Surg 1999; 28: 260-267.
  • 17 Hulse D, Butler D, Kay M, Noyes FR, Shires PK, D’Ambrosia R, Shoji H. Bio-mechanics of cranial cruciate ligament reconstruction in the dog. Part I. In vitro laxity testing. Vet Surg 1983; 12: 109-112.
  • 18 Hyman W, Hulse DS, Saunders B, Diezysic J, Beale B, Whitney W. Strain analysis of femoral and tibial anchorage sites for extra-articular reconstruction of the cranial cruciate deficient stifle joint. In: 28th Veterinary Orthopedic Society Conference Lake Louise, Canada: 2001: 32
  • 19 Johnson JA, Austin C, Breur GJ. Incidence of canine appendicular musculoskeletal disorders in 16 veterinary teaching hospitals from 1980 through 1989. Vet Comp Orthop Traumatol 1994; 7: 56-69.
  • 20 Lampman TJ, Lund EM, Lipowitz AJ. Cranial cruciate disease: current status of diagnosis, surgery, and risk for disease. Vet Comp Orthop Traumatol 2003; 16: 122-126.
  • 21 Leighton RL. Preferred method of repair of cranial cruciate ligament rupture in dogs: a survey of ACVS diplomates specializing in canine orthopedics. Vet Surg 1999; 28: 194
  • 22 Lewis DD, Milthorpe BK, Bellenger CR. Mechanical comparison of materials used for extracapsular stabilization of the stifle joint in dogs. Aust Vet J 1997; 75: 890-896.
  • 23 Lopez MJ, Hagquist W, Jeffrey SL, Gilbertson S, Markel MD. Instrumented measurement of in vivo anterior-posterior translation in the canine knee to assess anterior cruciate integrity. J Orthop Res 2004; 22: 949-954.
  • 24 Marshall JL, Olsson SE. Instability of the knee. A long-term experimental study in dogs. J Bone Joint Surg Am 1971; 53: 1561-1570.
  • 25 Marsolais GS, Dvorak G, Conzemius MG. Effects of postoperative rehabilitation on limb function after cranial cruciate ligament repair in dogs. J Am Vet Med Assoc 2002; 220: 1325-1330.
  • 26 McCartney WT, O’Connor JV, McCann WM. Incidence of infection and premature crimp failure after repair of cranial cruciate ligament-deficient stifles in 110 dogs. Vet Rec 2007; 161: 232-233.
  • 27 McKee WM, Miller A. A self-locking knot for lateral fabellotibial suture stabilization of the cranial cruciate ligament deficient stifle in the dog. Vet Comp Orthop Traumatol 1999; 12: 78-80.
  • 28 Montavon PM, Damur DM, Tepic S. Advancement of the tibial tuberosity for the treatment of cranial cruciate deficient canine stifle. In: 1st World Orthopaedic Veterinary Congress Munich, Germany: 2002: 152
  • 29 Ness M, Abercromby R, May C, Turner B, Carmichael S. A survey of orthopaedic conditions in small animal veterinary practice in Britain. Vet Comp Orthop Traumatol 1996; 9: 43-52.
  • 30 Patterson R, Smith GK, Gregor TP, Newton CD. Biomechanical stability of four cranial cruciate ligament repair techniques in the dog. Vet Surg 1991; 20: 85-90.
  • 31 Roe SC, Kue J, Gemma J. Isometry of potential suture attachment sites for the cranial cruciate ligament deficient canine stifle. Vet Comp Orthop Trauma-tol 2008; 21: 215-220.
  • 32 Slocum B, Slocum TD. Tibial plateau leveling osteotomy for repair of cranial cruciate ligament rupture in the canine. Vet Clin North Am Small Anim Pract 1993; 23: 777-795.
  • 33 Smith B. Extracapsular stabilisation. Aust Vet J 2000; 78: 382-383.
  • 34 Smith GK, Torg JS. Fibular head transposition for repair of cruciate-deficient stifle in the dog. J Am Vet Med Assoc 1985; 187: 375-383.
  • 35 Störk CK, Gibson NR, Owen MR, Schwarz T, Li A, Bennett D, Carmichael S. Radiographic features of a lateral extracapsular wire suture in the canine cranial cruciate deficient stifle. J Small Anim Pract 2001; 42: 487-490.
  • 36 Toombs JP, Clark KM. Basic operative techniques. In: Textbook of Small Animal Surgery 3rd ed.. Slatter MR. ed Philadelphia, PA, USA: Saunders; 2003: 199-222.
  • 37 Vasseur PB. Clinical results following nonoperative management for ruptur of the cranial cruciate ligament in dogs. Vet Surg 1984; 13: 243-246.
  • 38 Vianna ML, Roe SC. Mechanical comparison of two knots and two crimp systems for securing nylon line used for extra-articular stabilization of the canine stifle. Vet Surg 2006; 35: 567-572.