Tierarztl Prax Ausg K Kleintiere Heimtiere 2012; 40(04): 267-270
DOI: 10.1055/s-0038-1623649
Review Article
Schattauer GmbH

Relevance of chromosome 13 aberrations in canine tumours

Relevanz von Aberrationen des Chromosoms 13 bei kaninen Tumoren
N. Reimann-Berg
1   Klinik für Kleintiere und REBIRTH, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
,
H. Murua Escobar
1   Klinik für Kleintiere und REBIRTH, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
,
I. Nolte
1   Klinik für Kleintiere und REBIRTH, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
› Author Affiliations
Further Information

Publication History

Received: 26 February 2012

Accepted after revision: 01 May 2012

Publication Date:
06 January 2018 (online)

Summary

For human tumours there are many reports documenting the correlation between chromosome aberrations and tumour entities. Due to the complex canine karyotypic pattern (78 chromosomes), cytogenetic studies of tumours of the dog are rare. However, the reports in the literature show, that canine chromosome 13 (CFA 13) is predominantly involved in chromosomal changes. Interestingly, CFA 13 shows high homology to regions on the human chromosomes 4 (HSA 4) and 8 (HSA 8), which harbour the proto-oncogenes c-KIT and c-MYC. Both of these genes are involved in the development and progression of some human and canine tumour diseases.

Zusammenfassung

Der heutige Stand der Tumorzytogenetik von Tumoren des Hundes entspricht dem der menschlichen Tumorzytogenetik von vor 30 Jahren. Dies liegt vor allem an dem sehr komplizierten Karyotyp des Hundes, der aus 78 Chromosomen besteht. Die Literaturberichte zeigen, dass Chromosom 13 (CFA 13) besonders häufig von chromosomalen Aberrationen betroffen ist. Interessanterweise weist das Chromosom 13 des Hundes Homologien zu Abschnitten auf den menschlichen Chromosomen 4 (HSA 4) und 8 (HSA 8) auf. In diesen homologen Abschnitten finden sich unter anderen die Proto-Onkogene c-KIT und c-MYC. Diese Onkogene sind in die Entstehung und Progression einiger menschlicher wie auch kaniner Tumorerkrankungen involviert.

 
  • References

  • 1 Amariglio EN, Hakim I, Brok-Simoni F, Grossman Z, Katzir N, Harmelin A. et al. Identity of rearranged LINE/c-MYC junction sequences specific for the canine transmissible venereal tumor. Proc Natl Acad Sci USA 1991; 88 (18) 8136-8139.
  • 2 Aulmann S, Bentz M, Sinn HP. C-myc oncogene amplification in ductal carcinoma in situ of the breast. Breast Cancer Res Treat 2002; 74 (01) 25-31.
  • 3 Bartnitzke S, Motzko H, Caselitz J, Kornberg M, Bullerdiek J, Schloot W. A recurrent marker chromosome involving chromosome 1 in two mammary tumors of the dog. Cytogenet Cell Genet 1992; 60 (02) 135-137.
  • 4 Breen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, Sabacan L. et al. An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 2004; 05: 65.
  • 5 Breen M, Thomas R, Binns MM, Carter NP, Langford CF. Reciprocal chromosome painting reveals detailed regions of conserved synteny between the karyotypes of the domestic dog (Canis familiaris) and human. Genomics 1999; 61 (02) 145-155.
  • 6 Bubendorf L, Kononen J, Koivisto P, Schraml P, Moch H, Gasser TC. et al. Survey of gene amplifications during prostate cancer progression by highthroughout fluorescence in situ hybridization on tissue microarrays. Cancer Res 1999; 59 (04) 803-806.
  • 7 Delgado MD, León J. Myc roles in hematopoiesis and leukemia. Genes Cancer 2010; 01 (06) 605-616.
  • 8 Evolution Highway. http://alg.ncsa.uiuc.edu/do/tools/d2k Version 2005.
  • 9 Fosmire SP, Dickerson EB, Scott AM, Bianco SR, Pettengill MJ, Meylemans H. et al. Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium. Lab Invest 2004; 84 (05) 562-572.
  • 10 Frazier KS, Hines ME, 2nd Hurvitz AI, Robinson PG, Herron AJ. Analysis of DNA aneuploidy and c-myc oncoprotein content of canine plasma cell tumors using flow cytometry. Vet Pathol 1993; 30 (06) 505-511.
  • 11 Garrido MC, Bastian BC. KIT as a therapeutic target in melanoma. J Invest Dermatol 2010; 130 (01) 20-27.
  • 12 Gil RMda Costa, Matos E, Rema A, Lopes C, Pires MA, Gartner F. CD117 immunoexpression in canine mast cell tumours: correlations with pathological variables and proliferation markers. BMC Vet Res 2007; 03: 19.
  • 13 Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH. et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116 (03) 354-365.
  • 14 Hahn KA, Richardson RC, Hahn EA, Chrisman CL. Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 1994; 31 (05) 528-540.
  • 15 Horsting N, Wohlsein P, Reimann N, Bartnitzke S, Bullerdiek J, Nolte I. Cytogenetic analysis of three oropharyngeal malignant melanomas in dogs. Res Vet Sci 1999; 67 (02) 149-151.
  • 16 Inoue M, Shiramizu K. Immunohistochemical detection of p53 and c-myc proteins in canine mammary tumours. J Comp Pathol 1999; 120 (02) 169-175.
  • 17 ISCN. An International System for Human Cytogenetic Nomenclature. Shaffer LG, Slovak ML, Campbell LJ. eds. Basel: Karger; 2009
  • 18 Khanna C, Lindblad-Toh K, Vail D, London C, Bergman P, Barber L. et al. The dog as a cancer model. Nat Biotechnol 2006; 24 (09) 1065-1066.
  • 19 Kochevar DT, Kochevar J, Garrett L. Low level amplification of c-sis and c-myc in a spontaneous osteosarcoma model. Cancer Lett 1990; 53 2–3: 213-222.
  • 20 Kondi-Pafiti A, Arkadopoulos N, Gennatas C, Michalaki V, Frangou-Plegmenou M, Chatzipantelis P. Expression of c-kit in common benign and malignant breast lesions. Tumori 2010; 96 (06) 978-984.
  • 21 Mahdy E, Pan Y, Wang N, Malmstrom PU, Ekman P, Bergerheim U. Chromosome 8 numerical aberration and C-MYC copy number gain in bladder cancer are linked to stage and grade. Anticancer Res 2001; 21 (05) 3167-3173.
  • 22 Mayr B, Kramberger-Kaplan E, Loupal G, Schleger W. Analysis of complex cytogenetic alterations in three canine mammary sarcomas. Res Vet Sci 1992; 53 (02) 205-211.
  • 23 Mayr B, Reifinger M, Weissenbock H, Schleger W, Eisenmenger E. Cytogenetic analyses of four solid tumours in dogs. Res Vet Sci 1994; 57 (01) 88-95.
  • 24 Mayr B, Schleger W, Kalat M, Schweiger P, Reifinger M, Eisenmenger E. Cytogenetic studies in a canine mammary tumor. Cancer Genet Cytogenet 1990; 47 (01) 83-87.
  • 25 Mitelman FJB, Mertens F. eds Mitelman Database of chromosome aberrations and gene fusions in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman 2010
  • 26 Mitelman F, Johansson B, Mandahl N, Mertens F. Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet 1997; 95 (01) 1-8.
  • 27 Nolte I, Reimann N, Bullerdiek J, Bartnitzke S, Mischke R, Nolte M. [Importance of cytogenetic investigations in canine leukemias]. Tierarztl Prax 1997; 25 (04) 393-397.
  • 28 Nolte M, Werner M, Nolte I, Georgii A. Different cytogenetic findings in two clinically similar leukaemic dogs. J Comp Pathol 1993; 108 (04) 337-342.
  • 29 Ramos AH, Dutt A, Mermel C, Perner S, Cho J, Lafargue CJ. et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther 2009; 08 (21) 2042-2050.
  • 30 Reimann-Berg N, Murua HEscobar, Nolte I, Bullerdiek J. Testicular tumor in an XXY dog. Cancer Genet Cytogenet 2008; 183 (02) 114-116.
  • 31 Reimann-Berg N, Willenbrock S, Murua HEscobar, Eberle N, Gerhauser I, Mischke R. et al. Two new cases of polysomy 13 in canine prostate cancer. Cytogenet Genome Res 2011; 132 1–2: 16-21.
  • 32 Reimann N, Bartnitzke S, Bullerdiek J, Schmitz U, Rogalla P, Nolte I. et al. An extended nomenclature of the canine karyotype. Cytogenet Cell Genet 1996; 73 1–2 140-144.
  • 33 Reimann N, Nolte I, Bonk U, Bartnitzke S, Bullerdiek J. Cytogenetic investigation of canine lipomas. Cancer Genet Cytogenet 1999; 111 (02) 172-174.
  • 34 Reimann N, Rogalla P, Kazmierczak B, Bonk U, Nolte I, Grzonka T. et al. Evidence that metacentric and submetacentric chromosomes in canine tumors can result from telomeric fusions. Cytogenet Cell Genet 1994; 67 (02) 81-85.
  • 35 Smida J, Baumhoer D, Rosemann M, Walch A, Bielack S, Poremba C. et al. Genomic alterations and allelic imbalances are strong prognostic predictors in osteosarcoma. Clin Cancer Res 2010; 16 (16) 4256-4267.
  • 36 Switonski M, Reimann N, Bosma AA, Long S, Bartnitzke S, Pienkowska A. et al. Report on the progress of standardization of the G-banded canine (Canis familiaris) karyotype. Committee for the Standardized Karyotype of the Dog (Canis familiaris). Chromosome Res 1996; 04 (04) 306-309.
  • 37 Thomas R, Seiser EL, Motsinger-Reif A, Borst L, Valli VE, Kelley K. et al. Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas. Leuk Lymphoma 2011; 52 (07) 1321-1335.
  • 38 Thomas R, Smith KC, Ostrander EA, Galibert F, Breen M. Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br J Cancer 2003; 89 (08) 1530-1537.
  • 39 Usher SG, Radford AD, Villiers EJ, Blackwood L. RAS, FLT3, and C-KIT mutations in immunophenotyped canine leukemias. Exp Hematol 2009; 37 (01) 65-77.
  • 40 Winkler S, Murua HEscobar, Reimann-Berg N, Bullerdiek J, Nolte I. Cytogenetic investigations in four canine lymphomas. Anticancer Res 2005; 25 6B 3995-3998.
  • 41 Winkler S, Reimann-Berg N, Murua HEscobar, Loeschke S, Eberle N, Hoinghaus R. et al. Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 2006; 169 (02) 154-158.