Nuklearmedizin 1983; 22(03): 152-154
DOI: 10.1055/s-0038-1623791
Originalarbeiten - Original Articles
Schattauer GmbH

On the Mechanisms of 67Ga and 59Fe Uptake by Tumors

Über Mechanismen der 67Ga-Zitrat und 59Fe-Zitrat Aufnahme bei Tumoren
L. J. Anghileri
1   From the Service of Nuclear Medicine and Biophysics Laboratory, University of Nancy, Medical Faculty B, Nancy, France
,
M. C. Crone
1   From the Service of Nuclear Medicine and Biophysics Laboratory, University of Nancy, Medical Faculty B, Nancy, France
,
P. Thouvenot
1   From the Service of Nuclear Medicine and Biophysics Laboratory, University of Nancy, Medical Faculty B, Nancy, France
,
F. Brunotte
1   From the Service of Nuclear Medicine and Biophysics Laboratory, University of Nancy, Medical Faculty B, Nancy, France
,
C. Marchai
1   From the Service of Nuclear Medicine and Biophysics Laboratory, University of Nancy, Medical Faculty B, Nancy, France
,
J. Robert
1   From the Service of Nuclear Medicine and Biophysics Laboratory, University of Nancy, Medical Faculty B, Nancy, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 27. Januar 1983

Publikationsdatum:
10. Januar 2018 (online)

The uptake of 67Ga-citrate and 59Fe-citrate in the presence or absence of gallium and iron carriers, was studied on DSsarcoma-bearing rats. Differences of uptake pattern were observed with both radionuclides. The tumor uptake of 67Ga is greatly affected by both carriers while 59Fe uptake is independent of the presence of carriers. The role of isotopic dilution, ionic competition, and the probable presence of high and low affinity binding sites in this phenomenon are discussed.

Die Aufnahme von 67Ga-Zitrat und 59Fe-Zitrat, mit und ohne Gallium-und Eisenträger, wurde in Ratten mit DSSarkom untersucht. Beide Radionuklide zeigen unterschiedliche Aufnahmen. Beide Träger beeinflussen die Speicherung von 67Ga-Zitrat stark, jedoch nicht jene der 59Fe-Zitrat Aufnahme. Die Rolle der isotopischen Verdünnung, des isomorphen Ionenaustauschs und des wahrscheinlichen Auftretens von „high” und „low affinity” Bindungsstellen wird diskutiert.

 
  • References

  • R1 Anghileri L. J. Role of the tumor phospholipids in the accumulation of 67Ga-citrate. J. nucl. Biol. Med 16: 21-23 1972;
  • R2 Anghileri L. J, Thouvenot P, Brunotte F, Marchai C, Robert J. In vitro and in vivo effects of ferric citrate on 67Gacitrate by DS sarcoma tumors. Eur. J. nucl. Med 7: 266-268 1982;
  • R3 Anghileri L. J, Thouvenot P, Brunotte F, Marchai C, Robert J. Effects of various cations on the in vivo distribution of 67Ga-citrate. Int. J. nucl. Med. Biol 9: 195-196 1982;
  • R4 Anghileri L. J, Ottaviani M, Raynaud C. In vivo distribution of 67Ga and 111In complexes with transferrin: Uptake by DS-sarcoma tumors. (To be published in J. nucl. Med. all. Sei.).
  • R5 Emery T, Hoffer P. B. Siderophore-mediated mechanism of gallium uptake demonstrated in the microorganism Ustilago spherogena. J. nucl. Med 21: 935-939 1980;
  • R6 Engelstad B, Luk S. S, Hattner R. S. Altered 67Gacitrate distribution in patients with multiple red blood cell transfusions. Amer. J. Roentg 139: 755-759 1982;
  • R7 Hayes R. L, Rafter J. J, Byrd L. B, Carlton J. Studies of the in vivo entry of 67Ga into normal and malignant tissue. J. nucl. Med 22: 325-332 1981;
  • R8 Higashi T, Shimura A, Wakao H. The influence of iron on 67Ga distribution in tumor-bearing mice – Effect of iron administration after 67Ga injection. Radioisotopes 30: 385-390 1981;
  • R9 Larson S. M, Allen D. R, Rasey J. S, Grunbaum Z. Kinetics of binding of carrier-free 67Ga to human transferrin. J. nucl. Med 19: 1245-1249 1978;
  • R10 Larson S. M, Rasey J. S, Allen D. R, Nelson N. J. A transferrin-mediated uptake of Gallium-67 by EMT-6 sarcoma. I. Studies in tissue culture. J. nucl. Med 20: 837-842 1979;
  • R11 Larson S. M, Rasey J. S, Allen D. R, Grunbaum Z. A transferrin-mediated uptake of Gallium-67 by EMT-6 sarcoma. II. Studies in vivo (BALB/c mice). J. nucl. Med 20: 843-846 1979;
  • R12 Larson S. M, Grunbaum Z, Rasey J. S. The role of transferrins in gallium uptake. Int. J. nucl. Med. Biol 8: 257-266 1981;
  • R13 Rogers J. A, Noujaim A. A. Gallium-67 transport across artificial biological membranes. Int. J. nucl. Med. Biol 8: 315-322 1981;
  • R14 Sephton R. G, Hodgson G. S, DeAbrew S, Harris A. W. 67Ga and 59Fe distribution in mice. J. nucl. Med 19: 930-935 1978;
  • R15 Shimura A, Higashi T, Wakao H. The influence of iron on 67Ga distribution in tumor-bearing mice – Effect of iron administration before 67Ga injection. Radioisotopes 30: 379-384 1981;
  • R16 Stern P. H, Halpern S. E, Hagan P. L, Chen A. The effect of certain variables on the tumor and tissue distribution of tracers. VI. False-carrier effect, Part III. Fe. Invest. Radiol 17: 386-393 1982;
  • R17 Weiner R, Hoffer P. B, Thakur M L. Lactoferrin: Its role as a 67Ga binding protein in polymorphonuclear leukocytes. J. nucl. Med 22: 32-37 1981;
  • R18 Wong H, Terner U. K, English D, Noujaim A. A, Lentle B. C, Hill J. R. The role of transferrin in the in vivo uptake of Gallium-67 in a canine tumor. Int. J. nucl. Med. Biol 7: 9-16 1980;