Nuklearmedizin 2006; 45(01): 49-56
DOI: 10.1055/s-0038-1623934
Original Article
Schattauer GmbH

Comparison of diagnostic accuracy of 18F-FDG PET, 123I-IMT- and 99mTc-MIBI SPECT

Evaluation of tumour progression in irradiated low grade astrocytomasVergleich der diagnostischen Genauigkeit von 18F-FDG PET, 123I-IMT- und 99mTc-MIBI SPECTzur Ermittlung des Progressionsstatus bestrahlter niedriggradiger Astrozytome
M. Henze
1   Abteilung für Nuklearmedizin, Radiologische Universitätsklinik Heidelberg
,
N. Özdemir-Sahin
1   Abteilung für Nuklearmedizin, Radiologische Universitätsklinik Heidelberg
,
P. Hipp
2   Abteilung für Strahlentherapie, Radiologische Universitätsklinik Heidelberg
3   Abteilung für Strahlentherapie, Universitätsklinik Ulm
,
W. Mier
1   Abteilung für Nuklearmedizin, Radiologische Universitätsklinik Heidelberg
,
M. Eisenhut
4   Abteilung für Radiopharmazeutische Chemie, Deutsches Krebsforschungszentrum (DKFZ) Heidelberg
,
J. Debus
2   Abteilung für Strahlentherapie, Radiologische Universitätsklinik Heidelberg
,
U. Haberkorn
1   Abteilung für Nuklearmedizin, Radiologische Universitätsklinik Heidelberg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Eingegangen: 30. März 2005

25. Juli 2005

Publikationsdatum:
10. Januar 2018 (online)

Summary

Aim was to evaluates the diagnostic accuracy of the SPECTtracers 3-123I-α-methyl-L-tyrosine (IMT) and 99mTc(I)- hexakis(2-methoxyisobutylisonitrile) (MIBI) as well as the PET-tracer 2-18F-2-deoxyglucose (FDG) for detecting tumour progression in irradiated low grade astrocytomas (LGA). Patients, methods: We examined 91 patients (56 males; 35 females; 44.7 ± 11.5 years), initially suffering from histologically proven LGAs (mean WHO grade II) and treated by stereotactic radiotherapy (59.0 ± 4.6 Gy). On average 21.9 ± 11.2 months after radiotherapy, patients presented new Gd-DTPA enhancing lesions on MRI, which did not allow a differentiation between progressive tumour (PT) and non-PT (nPT) at this point of time. PET scans (n=82) were acquired 45 min after injection of 208 ± 32 MBq FDG. SPECT scans started 10 min after injection of 269 ± 73 MBq IMT (n=68) and 15 min after injection of 706 ± 63 MBq MIBI (n=34). Lesions were classified as PT and nPT based on prospective follow-up (clinically, MRI) for 17.2 ± 9.9 months after PET/SPECT. Lesion-to-normal ratios (L/N) were calculated using contra lateraly mirrored reference regions for the SPECT examinations and reference regions in the contra lateral grey (GM) and white matter (WM) for FDG PET. Ratios were evaluated by Receiver Operating Characteristic (ROC) analysis. Results: In the patient groups nPT and PT, L/N ratios for FDG (GS) were 0.6 ± 0.3 vs. 1.2 ± 0.5 (p = 0.003), for FDG (WS) 1.2 ± 0.4 vs. 2.6 ± 0.4 (p <0.001), for IMT 1.1 ± 0.1 vs. 1.8 ± 0.4 (p <0.001) and for MIBI 1.6 ± 0.7 vs. 2.6 ± 2.2 (p = 0.554). Areas under the non-parametric ROC-curves were: 0.738 ± 0.059 for FDG (GS), 0.790 ± 0.057 for FDG (WS), 0.937 ± 0.037 for IMT and 0.564 ± 0.105 for MIBI. Conclusion: MIBI-SPECT examinations resulted in a low accuracy and especially in a poor sensitivity even at modest specificity values. A satisfying diagnostic accuracy was reached with FDG PET. Using WM as reference region for FDG PET, a slightly higher AUC as compared to GM was calculated. IMT yielded the best ROC characteristics and the highest diagnostic accuracy for differentiating between PT and nPT in irradiated LGA.

Zusammenfassung

Ziel: Ermittlung der diagnostischen Genauigkeit des PETTracers 2-18F-2-Deoxyglukose (FDG) sowie der SPECT-Tracer 123I-α-Methyl-L-Tyrosin (IMT) und 99mTc-Hexakis-Methoxy- isobutyl-isonitril (MIBI) zur Detektion einer Tumorprogression bei bestrahlten niedriggradigen Astrozytomen (LGA). Patienten, Methoden: Das Kollektiv bestand aus 91 Patienten (56 Männer; 35 Frauen; 44,7 ± 11,5 Jahre) mit histologisch gesicherten LGA (mittlerer WHO-Grad II), die stereotaktisch bestrahlt wurden (59,0 ± 4,6 Gy). Durchschnittlich 21,9 ± 11,2 Monate nach Strahlentherapie zeigten die Patienten Gd-DTPA anreichernde Läsionen in der MRT, progressive (PT) und nicht progressive Tumoren (nPT) waren nicht zu unterscheiden. Die PET (n = 82) wurde 45 min nach Injektion von 208 ± 32 MBq FDG durchgeführt. Die SPECT begann 10 min nach Injektion von 269 ± 73 MBq IMT (n = 68) bzw. 15 min nach Injektion von 706 ± 63 MBq MIBI (n = 34). Die Läsionen wurden basierend auf einer prospektiven Nachbeobachtung (klinisch, MRT) von 17,2 ± 9,9 Monaten als PT bzw. nPT klassifiziert und mittels Receiver Operating Characteristic (ROC)- Analyse ausgewertet. Referenzregion bei SPECT-Untersuchungen war das in die kontralaterale Hemisphäre gespiegelte Läsionsgebiet und für die FDG PET die kontralaterale graue und weiße Substanz (GS bzw. WS). Ergebnisse: In den Patientengruppen nPT und PT waren L/N für FDG (GS) 0,6 ± 0,3 vs. 1,2 ± 0,5 (p = 0,003), für FDG (WS) 1,2 ± 0,4 vs. 2,6 ± 0,4 (p <0,001), für IMT 1,1 ± 0,1 vs. 1,8 ± 0,4 (p <0,001) und für MIBI 1,6 ± 0,7 vs. 2,6 ± 2,2 (p = 0,554). Flächen unter der nicht parametrischen ROC-Kurve: für FDG (GS) 0,738 ± 0,059, für FDG (WS) 0,790 ± 0,057, für IMT 0,937 ± 0,037 und für MIBI 0,564 ± 0,105. Schlussfolgerung: Für die MIBISPECT unterschied sich die AUC nicht signifikant von der einer Zufallsdiagnose. FDG PET zeigte eine befriedigende diagnostische Genauigkeit. Mit WS als Referenz wurde gegenüber GS eine geringfügig höhere AUC berechnet, IMT SPECT erwies eine sehr gute diagnostische Genauigkeit, um zwischen PT und nPT bei bestrahlten LGA zu differenzieren.

 
  • Literatur

  • 1 Andrews RJ. Transhemispheric diaschisis: A review and comment. Stroke. 1991; 22: 943-9.
  • 2 Bader JB, Samnick S, Moringlane JR. et al. Evaluation of l-3-[123I]iodo-alpha-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: a comparative study with stereotactic biopsy. Eur J Nucl Med 1999; 26: 144-51.
  • 3 Baillet G, Albuquerque L, Chen Q. et al. Evaluation of single-photon emission tomography imaging of supratentorial brain gliomas with technetium- 99m sestamibi. Eur J Nucl Med 1994; 21: 1061-6.
  • 4 Brix G, Zaers J, Adam LE. et al. Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 1997; 38: 1614-23.
  • 5 Byrne TN. Imaging of gliomas. Semin Oncol 1994; 21: 162-71.
  • 6 Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; 25: 638-43.
  • 7 Delbeke D, Meyerowitz C, Lapidus RL. et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of lowgrade from high-grade brain tumors with PET. Radiology 1995; 195: 47-52.
  • 8 Di Chiro G, Brooks RA. PET quantitation: blessing and curse. J Nucl Med 1988; 29: 1603-4.
  • 9 Dobbeleir AA, Hambye AS, Franken PR. Influence of high-energy photons on the spectrum of iodine- 123 with low- and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 1999; 26: 655-8.
  • 10 Fukomoto M. Single-photon agents for tumor imaging: 201Tl, 99mTc-MIBI, and 99mTc-Tetrofosmin. Ann Nucl Med 2004; 18: 79-95.
  • 11 Glantz MJ, Hoffman JM, Coleman RE. et al. Identification of early recurrence of primary central nervous system tumors by [18F]fluorodeoxyglucose positron emission tomography. Ann Neurol 1991; 29 (Suppl. 04) 347-55.
  • 12 Guth-Tougelidis B, Müller S, Mehdorn MM. et al. Uptake of DL-3-123I-iodo-alpha-methyltyrosine in recurrent brain tumors. Nuklearmedizin 1995; 34: 71-5.
  • 13 Henze M, Mohammed A, Schlemmer H. et al. Detection of tumour progression in the follow-up of irradiated low-grade astrocytomas: comparison of 3-[123I]iodo-alpha-methyl- L-tyrosine and 99mTc- MIBI SPET. Eur J Nucl Med Mol Imaging 2002; 29: 1455-61.
  • 14 Henze M, Mohammed A, Schlemmer HP. et al. PET and SPECT for detection of tumor progression in irradiated low-grade astrocytoma: a receiver- operating-characteristic analysis. J Nucl Med 2004; 45: 579-86.
  • 15 Herfarth KK, Gutwein S, Debus J. Postoperative radiotherapy of astrocytomas. Sem Surg Oncol 2001; 20: 13-23.
  • 16 Ishikawa M, Kikuchi H, Miyatake S. et al. Glucose consumption in recurrent gliomas. Neurosurgery 1993; 33: 28-33.
  • 17 Kubota R, Kubota K, Yamada S. et al. Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 1995; 36: 484-92.
  • 18 Kuwert T, Woesler B, Morgenroth C. et al. Diagnosis of recurrent glioma with SPECT and iodine- 123-alpha-methyl tyrosine. J Nucl Med 1998; 39: 23-7.
  • 19 Lamy-Lhullier C, Dubois F, Blond S. et al. Importance of cerebral tomoscintigraphy using technetium- labeled sestamibi in the differential diagnosis of current tumor vs. radiation necrosis in subtentorial glial tumors in the adult. Neurochirurgie 1999; 45: 110-7.
  • 20 Landis SH, Murray T, Bolden S. et al. Cancer statistics, 1999. CA Cancer J Clin 1999; 49: 8-31.
  • 21 Langen KJ, Coenen HH, Roosen N. et al. PECT studies of brain tumors with L-3-[123I] iodo-alphamethyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med 1990; 31: 281-6.
  • 22 Langen KJ, Roosen N, Coenen HH. et al. Brain and brain tumor uptake of L-3-[123I]iodo-alpha-methyl tyrosine: competition with natural L-amino acids. J Nucl Med 1991; 32: 1225-9.
  • 23 Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000; 41: 1861-7.
  • 24 Leeds NE, Jackson EF. Current imaging techniques for the evaluation of brain neoplasms. Curr Opin Oncol 1994; 6: 254-61.
  • 25 Maffioli L, Gasparini M, Chiti A. et al. Clinical role of technetium-99m sestamibi single-photon emission tomography in evaluating pretreated patients with brain tumours. Eur J Nucl Med 1996; 23: 308-11.
  • 26 McCormack BM, Miller DC, Budzilovich GN. et al. Treatment and survival of low-grade astrocytoma in adults: 1977-1988. Neurosurgery 1992; 31: 636-42.
  • 27 Metz CE. Basic principles of ROC analysis. Seminars Nucl Med 1978; 8: 283-98.
  • 28 Meyer PT, Schreckenberger M, Spetzger U. et al. Comparison of visual and ROI-based brain tumour grading using 18F-FDG PET: ROC analyses. Eur J Nucl Med 2001; 28: 165-74.
  • 29 Olivero WC, Dulebohn SC, Lister JR. The use of PET in evaluating patients with primary brain tumours: is it useful?. J Neurol Neurosurg Psychiatry 1995; 58: 250-2.
  • 30 Patronas NJ, Di Chiro G, Brooks RA. et al. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain. Radiology 1982; 144: 885-9.
  • 31 Ricci PE, Karis JP, Heiserman JE. et al. Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography?. AJNR Am J Neuroradiol 1998; 19: 407-13.
  • 32 Soler C, Beauchesne P, Maatougui K. et al. Technetium- 99m sestamibi brain single-photon emission tomography for detection of recurrent gliomas after radiation therapy. Eur J Nucl Med 1998; 25: 1649-57.
  • 33 Staudenherz A, Fazeny B, Marosi C. et al. Does 99mTc-Sestamibi in high-grade malignant brain tumors reflect blood-brain barrier damage only?. Neuroimage 2000; 12: 109-11.
  • 34 Thompson TP, Lunsford LD, Kondziolka D. Distinguishing recurrent tumor and radiation necrosis with positron emission tomography versus stereotactic biopsy. Stereotact Funct Neurosurg 1999; 73: 9-14.
  • 35 Vick NA, Ciric IS, Eller TW. et al. Reoperation for malignant astrocytoma. Neurology 1989; 39: 430-2.
  • 36 Weber W, Bartenstein P, Gross MW. et al. Fluorine- 18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 1997; 38: 802-8.
  • 37 Woesler B, Kuwert T, Morgenroth C. et al. Non-invasive grading of primary brain tumours: results of a comparative study between SPET with 123I-alpha- methyl tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 1997; 24: 428-34.
  • 38 Zweig MH, Campbell G. Receiver-Operating Characteristic (ROC) Plots: A fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-77.