Nuklearmedizin 2006; 45(04): 163-170
DOI: 10.1055/s-0038-1625114
Original Articles
Schattauer GmbH

FDG gamma camera PET equipped with one inch crystal and XCT

Assessment of myocardial viabilityMit Ein-Zoll-Kristallen ausgerüstete Gammakamera-PET und -XCTBeurteilung der myokardialen Vitalität
M. Beheshti
1   Department of Nuclear Medicine (Head: Prof. Dr. R. Dudczak)
5   Nuclear Medicine and Endocrinology (Head: Doz. Dr. W. Langsteger), PET CT Centre, St. Vincent’s Hospital Linz, Austria
,
A. Khorsand
2   Cardiology (Head: Prof. Dr. G. Maurer), Medical University, General Hospital of Vienna, Department of
,
S. Graf
2   Cardiology (Head: Prof. Dr. G. Maurer), Medical University, General Hospital of Vienna, Department of
,
G. Dobrozemsky
3   Nuclear Medicine (Head: Prof. Dr. I. Virgolini), Medical University of Innsbruck
,
S. Oezer
1   Department of Nuclear Medicine (Head: Prof. Dr. R. Dudczak)
,
K. Kletter
1   Department of Nuclear Medicine (Head: Prof. Dr. R. Dudczak)
,
R. Dudczak
1   Department of Nuclear Medicine (Head: Prof. Dr. R. Dudczak)
,
C. Pirich
4   Nuclear Medicine und Endocrinology (Head: Prof. Dr. C. Pirich), Paracelsus Private Medical University, SALK, Salzburg
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 12. September 2005

in revised form: 23. Januar 2006

Publikationsdatum:
10. Januar 2018 (online)

Summary

Metabolic imaging with 2-[fluorine-18]-fluoro- 2-deoxy-D-glucose (FDG) is actually considered as the best method to detect and quantitatively assess myocardial tissue viability. The aim of this study was to investigate the accuracy of FDG gamma camera positron emission tomography (GCPET) imaging equipped with one inch NaI crystals in comparison to FDG dedicated PET (dPET) imaging as a „gold standard“ in phantom and clinical studies. Patients, methods: Nineteen patients with coronary artery disease (CAD) underwent both imaging modalities. Phantom and clinical GCPET imaging were performed with a dual-headed, coincidence based gamma camera equipped with 1 inch thick NaI crystals and an x-ray tube (XCT) for attenuation correction (AC), as well as with a dedicated PET scanner with AC. 99mTc tetrofosmin single-photon emission tomography (SPET) studies were performed for assessment of myocardial perfusion, with AC. Results: Phantom studies showed a significant relation in segmental activity between FDG imaging with AC using GCPET and dPET (r = 0.91, p <0.001). In clinical studies with AC correlation coefficients of mean segmental FDG uptake and regional defect size were r = 0.87 (p <0.0001) and r = 0.83 (p <0.0001), respectively. In regional analysis close agreement was even found in the most attenuated regions of the heart if AC was used in GCPET imaging. The overall agreement for detection of viable myocardium was 81% between FDG-dPET (AC) and FDG-GCPET (AC) and 74% between FDG-dPET (AC) and FDG-GCPET (NC). Conclusion: This study suggests that the assessment of myocardial metabolism by means of FDG is feasible with a coincidence based gamma camera equipped with 1 inch thick NaI crystals if AC is performed. The results reveal a close concordance and agreement between FDG-dPET (AC) and FDG-GCPET (AC) as compared to FDG-GCPET (NC).

Zusammenfassung

Die Bildgebung mit 2-[Fluor-18]-Fluor-2-deoxy-D-glukose (FDG) ist die genaueste szintigraphische Methode zur Erfassung und Quantifizierung der myokardialen Vitalität. Ziel dieser Studie war es, die Genauigkeit der Positronenemissionstomographie mit einer mit 1-Zoll Kristallen ausgerüsteten Gammakamera (GCPET) mit jener der dezidierten PET (dPET) als Goldstandard zu vergleichen. Patienten, Methodik: Neunzehn Patienten mit koronarer Herzerkrankung wurden mit beiden Verfahren untersucht. Phantom- und klinische Studien wurden an einer mit 1-Zoll Natriumiodidkristallen ausgerüsteten GCPET mit und ohne Röntgen-Abschwächungskorrektur und an einem dezidierten PET-Scanner mit Abschwächungskorrektur durchgeführt. 99mTc-Tetrofosmin Single-Photonen-Emissionstomographie( SPET)-Untersuchungen mit Abschwächungskorrektur wurden zur Beurteilung der myokardialen Perfusion herangezogen. Ergebnisse: Die Phantomstudien zeigten eine signifikante Beziehung zwischen der segmentalen FDG Aktivität in schwächungskorrigierten GCPET und dPET Untersuchungen (r = 0,91, p <0,001). In den klinischen Untersuchungen betrugen die Korrelationskoeffizienten für die mittlere segmentale FDG Aufnahme und die regionale Defektgröße r = 0,87 (p <0,0001) und r = 0,83 (p <0,0001). Die Übereinstimmungsrate zwischen FDGdPET und FDG-GCPET für die Erfassung von vitalen Myokardsegmenten betrug 81% unter Verwendung der Schwächungskorrektur, jedoch nur 74%, wenn diese bei der GCPET nicht eingesetzt worden war. Schlussfolgerung: Phantom- und klinische Studien zeigen die Machbarkeit der Beurteilung des myokardialen Glukosemetabolismus mit FDG unter Verwendung einer Gammakamera mit 1-Zoll-NaJ-Kristallen, falls die Schwächungskorrektur eingesetzt wird. Die Ergebnisse zeigen hohe Konkordanz zwischen dPET und GCPET mit Schwächungskorrektur.

 
  • References

  • 1 Altehoefer C, vom Dahl J, Biedermann M. et al. Significance of defect severity in technetium- 99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18FDG PET. J Nucl Med 1994; 35: 569-74.
  • 2 Bax JJ, James A, Patton Ja. et al. 18-Fluorodeoxygucose imaging with positron emission tomography and single photon emission computed tomography: cardiac application. Semin Nucl Med 2000; 30: 281-98.
  • 3 Bax JJ, van Eck-Smit BLF, van der Wall EE. Assessment of tissue viability: clinical demand and problems. Eur Heart J 1998; 19: 847-58.
  • 4 Bax JJ, Veening MA, Visser FC. et al. Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 1996; 24: 35-41.
  • 5 Beller GA, Zerat BL. Wintergreen panel summaries. J Nucl Cardiol 1999; 6: 93-115.
  • 6 Beller GA. Assessment of myocardial viability. Curr Opin Cardiol 1997; 12: 459-67.
  • 7 Burt RW, Perkins OW, Oppenheim BE. et al. Direct comparison of fluorine-18-FDG SPECT, fluorine- 18-FDG PET and rest thallium-201 SPECT for detection of myocardial viability. J Nucl Med 1995; 36: 176-9.
  • 8 Conti PS, Keppler JS, Halls JM. Positron emission tomography: a financial and operational analysis. Am J Roentgenol 1994; 162: 1279-86.
  • 9 De Sutter J, De Winter F, van de Wiele C. et al. Cardiac fluorine-18 fluorodeoxyglucose imaging using a dual-head gamma camera with coincidence detection: a clinical pilot study. Eur J Nucl Med 2000; 27: 676-85.
  • 10 Dilsizian V, Bonow RO. Current diagnostic techniques of assessing viability in patients with hibrinating and stunned myocardium. Circulation 1993; 87: 1-20.
  • 11 Even-Sapir E, Yuzefovich B, Miller E. et al. Coincidence imaging using 2 dual-head gammacamera systems, with and without attenuation correction. J Nucl Med Technol 2004; 32: 190-7.
  • 12 Hicks RJ. Insulin glucose clamp for standardization of metabolic conditions during F-18 fluorodeoxyglucose PET imaging. J Am Coll Cardiol 1991; 17: 381A.
  • 13 Huitink JM, Visser FC, Bax JJ. et al. Predictive value of planar 18F-fluorodeoxyglucose imaging for cardiac events in patients after acute myocardial infarction. Am J Cardiol 1998; 81: 1072-7.
  • 14 Knuuti MJ, Nuutila P, Ruotsalainen U. et al. Euglycemic hyperinsulinemic clamp and orale glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992; 33: 1255-62.
  • 15 Levkovitz R, Falikman D, Zibulevsky M. et al. The design and implementation of COSEM, an iterative algorithm for fully 3-D listmode data. IEEE Transactions Med Imaging 2001; 20: 633-42.
  • 16 Lewis P, Nunan T, Dynes A. et al. The use of low dose intravenous insulin in clinical myocardial 18F FDG Pet scanning. Clin Nucl Med 1996; 21: 15-8.
  • 17 Louie HW, Laks H, Milgalter E. et al. Ischemic cardiomyopathy: criteria for coronary revascularization and crdiac transplantation. Circulation 1991; 84: III290-5.
  • 18 Martin WH, Jones RC, Delbeke D. et al. A simplified intravenous glucose loading protocol for fluorine- 18 fluorodeoxyglucose cardiac singlephoton emission tomography. Eur J Nucl Med 1997; 24: 1291-7.
  • 19 Marwick TH. The viable myocardium: Epidemiology, detection, and clinical implications. Lancet 1998; 351: 815-9.
  • 20 Metz CE. Basic principles of ROC analysis. Semin Nucl Med 1978; 8: 283-98.
  • 21 Muellehner G, Geagen M, Countryman P. et al. SPECT scanner with PET coincidence capability. J Nucl Med 1995; 36 Suppl 70P.
  • 22 Nekolla SG, Miethaner C, Nguyen N. et al. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 1998; 25: 1313-21.
  • 23 Nowak B, Zimny M, Schwarz ER. et al. Diagnosis of myocardial viability by dual-head coincidence gamma camera fluorine-18 fluorodeoxyglucose positron emission tomography with and without non-uniform attenuation correction. Eur J Nucl Med 2000; 27: 1501-8.
  • 24 Pirich C, Schwaiger M. The clinical role of positron emission tomography in management of cardiac patient. Rev Port Cardiol 2000; 19 (Suppl. 01) I89-100.
  • 25 Rizzello V, Poldermans D, Bax JJ. Assessment of myocardial viability in chronic ischemic heart disease: current status. Q J Nucl Med 2005; 49: 81-96.
  • 26 Sandler MP, Patton JA. Fluorine 18-labeled fluorodeoxyglucose cardiac imaging using a modified scintillation camera. J Nuc Med 1998; 39: 2035-43.
  • 27 Schelbert HR. Positron emission tomography for the assessment of myocardial viability. Circulation 1991; 84 (suppl I): I-122-31.
  • 28 Schroder O, Hör G, Hertel A. et al. Combined hyperinsulinaemic glucose clamp and oral acipimox for optimizing metabolic conditions during 18F-fluorodeoxyglucose gated PET cardiac imaging: comparative results. Nucl Med Commun 1998; 19: 867-74.
  • 29 Schwaiger M, Hicks R. The clinical role of metabolic imaging of the heart by positron emission tomography. J Nucl Med 1991; 32: 565-78.
  • 30 Srinivasan G, Kitsiou AN, Bacharach SL. et al. 18-fluorodeoxyglucose single photon emission computed tomography. Can it replace PET and thallium SPECT for assessment of myocardial viability?. Circulation 1998; 97: 843-50.
  • 31 Tian M, Koyama K, Zhang H. et al. Assessment of myocardial viability with a positron coincidence gamma camera using fluorodeoxyglucose in comparison with dedicated PET. Nucl Med Commun 2003; 24: 367-74.
  • 32 Tillisch J, Brunken R, Marshall R. et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 884-8.
  • 33 Topol EJ. Comprehensive cardiovascular medicine. Philadelphia: Lippincot-Raven 1998; 2: 1587-613.
  • 34 Udelson JE. Steps forward in the assessment of myocardial viability in left ventricular dysfunction. Circulation 1998; 97: 833-8.
  • 35 Vom Dahl J, Altehoefer C, Sheehan FH. et al. Effect of myocardial viability assessed by technetium- 99m-sestamibi SPECT and fluorine- 18-FDG PET on clinical outcome in coronary artery disease. J Nucl Med 1997; 38: 742-8.
  • 36 Vom Dahl J, Altehoefer C, Sheehan FH. et al. Recovery of regional left ventricular dysfunction after coronary revascularization. Impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 1996; 28: 948-58.