Nuklearmedizin 2002; 41(02): 80-90
DOI: 10.1055/s-0038-1625645
Originalarbeiten – Original Articles
Schattauer GmbH

Assessment of endocrine disorders of the hypothalamicpituitary axis by nuclear medicine techniques

Nuklearmedizinische Verfahren zur Abklärung endokrinologischer Erkrankungen der Hypothalamus- Hypophysen-Achse
M. Schmidt
1   Klinik und Poliklinik für Nuklearmedizin
,
F. Jockenhövel
2   Klinik II für Innere Medizin, Universität zu Köln, Deutschland
,
P. Theissen
1   Klinik und Poliklinik für Nuklearmedizin
,
M. Dietlein
1   Klinik und Poliklinik für Nuklearmedizin
,
W. Krone
2   Klinik II für Innere Medizin, Universität zu Köln, Deutschland
,
H. Schicha
1   Klinik und Poliklinik für Nuklearmedizin
› Author Affiliations
Further Information

Publication History

Eingegangen: 23 April 2001

in revidierter Form: 08 November 2001

Publication Date:
10 January 2018 (online)

Summary

The following article reviews nuclear medicine techniques which can be used for assessment of endocrine disorders of the hypothalamic-pituitary axis. For planar and SPECT imaging somatostatin-receptor- and dopamine- D2-receptor-scintigraphy are the most widely distributed techniques. These nuclear medicine techniques may be indicated in selected cases to answer differential diagnostic problems. They can be helpful to search for presence and localization of receptor positive tissue. Furthermore they can detect metastasis in the rare cases of a pituitary carcinoma. Scintigraphy with Gallium-67 is suitable for further diagnostic evaluation in suspected hypophysitis. Other SPECT radiopharmaca do not have relevant clinical significance. F-18-FDG as PET radiopharmacon is not ideal because obvious pituitary adenomas could not be visualized. Other PET radiopharmaca including C-11-methionine, C-11-tyrosine, F-18-fluoroethylspiperone, C-11-methylspiperone, and C-11-raclopride are available in specialized centers only. Overall indications for nuclear medicine in studies for the assessment of endocrine disorders of the hypothalamic-pituitary-axis are rare. Original studies often report only about a small number of patients. According to the authors’ opinion the relevance of nuclear medicine in studies of clinically important endocrinologic fields, e. g. localization of small ACTH-producing pituitary adenomas, tumor localization in ectopic ACTH syndrome, localization of recurrent pituitary tissue, assessment of small incidentalomas, can not be definitely given yet.

Zusammenfassung

Diese Übersichtsarbeit fasst die nuklearmedizinischen Untersuchungsverfahren zur Abklärung endokrinologischer Erkrankungen der Hypothalamus-Hypophysen- Achse zusammen. Bei den planaren und SPECT-Unter suchungen sind Somatostatin-Rezeptor- und Dopamin- D2-Rezeptor-Szintigraphie die verbreitetsten Untersuchungstechniken. Im Einzelfall sind sie zur Differenzialdiagnostik, zum Nachweis und zur Lokalisation von rezeptorpositivem Gewebe und zur Metastasensuche beim seltenen Hypophysenkarzinom sinnvoll. Die Szintigraphie mit Gallium-67 ist zwecks weiterer Abklärung bei der Verdachtsdiagnose Hypophysitis geeignet. Andere SPECT-Radiopharmaka haben keine relevante klinische Bedeutung. F-18-FDG stellt kein ideales PETRadiopharmakon dar, weil damit gesicherte Hypophysenadenome nicht dargestellt werden konnten. Die PET-Radiopharmaka C-11-Methionin bzw. -Tyrosin, F-18- Fluorethylspiperon, C-11-Methylspiperon und -Racloprid stehen nur in spezialisierten Zentren zur Verfügung. Insgesamt sind die Indikationen für nuklearmedizinische Untersuchungen bei endokrinologischen Erkrankungen der Hypothalamus-hypophysen-Achse selten. Der Nutzen nuklearmedizinischer Untersuchungsverfahren bei klinisch relevanten endokrinologischen Fragen (Lokalisation kleiner ACTH-produzierender Hypophysenadenome, Tumorsuche bei ektoper ACTH-Produktion, Nachweis von Hypophysenadenomrestgewebe, Abklärung kleiner Inzidentalome) kann nach Meinung der Autoren nicht abschließend beantwortet werden.

 
  • Literatur

  • 1 Abe T, Iwata T, Shimazu M. et al. A case of a neurohypophyseal germinoma misdiagnosed as a pituitary adenoma: usefulness of a gallium- 67 citrate scintigram for diagnosis. No Shinkei Geka Journal 1994; 3: 254-8.
  • 2 Bagni B, Pinna L, Tamarozzi R. et al. SPECT imaging of intracranial tumours with Tc-99msestamibi. Nucl MEd Commun 1995; 16: 258-64.
  • 3 Bartenstein P, Grünwald F, Kuwert T. et al. Klinische Anwendung der Single-Photon-Emissionstomographie in der Neuromedizin. Teil 1: Neuroonkologie, Epilepsien, Basalganglienerkrankungen, zerebrovaskuläre Erkrankungen. Nuklearmedizin 39: 180-95 2000; Teil 2: Dementielle Erkrankungen, Psychosen, Entzündungen, Schädelhirntraumata. Nuklearmedizin 2000; 39: 218-32.
  • 4 Berger F, Meyer G, Weiss M. et al. Diagnostische Abklärung eines TSH-produzierenden Hypophysenadenoms bei »Empty Sella« mittels Somatostatin- und Dopamin-D2-Rezeptorszintigraphie. Nuklearmedizin 2000; 39: 42-5.
  • 5 Bergström M, Muhr C, Lundberg PO. et al. PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 1991; 32: 610-5.
  • 6 Colao A, Ferone D, Lastoria S. et al. Hormone levels and tumour size response to quinagolide and cabergoline in patients with prolactinsecreting and clinically non-functioning pituitary adenomas: predictive value of pituitary scintigraphy with 123I-methoxybenzamide. Clin Endocrinol 2000; 52: 437-45.
  • 7 Colao A, Lastoria S, Ferone D. et al. The pituitary uptake of 111In-DTPA-D-Phe1-octreotide in the normal pituitary and in pituitary adenomas. J Endocrinol Invest 1999; 22: 176-83.
  • 8 Colombo P, Siccardi AG, Paganelli G. et al. Three-step immunoscintigraphy with antichromogranin A monoclonal antibody in tumours of the pituitary region. Eur J Endocrinol 1996; 135: 216-21.
  • 9 Cronin MJ, Cheung CY, Wilson CB. et al. (3H) Spiperone binding to human anterior pituitaries and pituitary adenomas secreting prolactin, growth hormone, and adrenocorticotropic hormone. J Clin Endocrinol Metab 1980; 50: 387-91.
  • 10 Daemen BJG, Zwertbroek R, Elsinga PH. et al. PET studies with L-(1-11C)tyrosine, L-(methyl- 11C)methionine and 18F-fluorodeoxyglucose in prolactinomas in relation to bromocryptine treatment. Eur J Nucl Med 1991; 18: 453-60.
  • 11 De Herder WW, Krenning EP, Malchoff CD. et al. Somatostatin receptor scintigraphy: its value in tumor localization in patients with Cushing’s syndrome caused by ectopic corticotropin or corticotropin-releasing hormone secretion. Am J Med 1994; 96: 305-12.
  • 12 De Herder WW, Reijs AEM, de Swart J. et al. Comparison of iodine-123 epidepride and iodine- 123 IBZM for dopamine D2 receptor imaging in clinically non-functioning pituitary macroadenomas and macroprolactinomas. Eur J Nucl Med 1999; 26: 46-50.
  • 13 De Souza B, Brunetti A, Fulham MJ. et al. Pituitary microadenomas: A PET study. Radiology 1990; 177: 39-44.
  • 14 Doppman JL. Somatostatin receptor scintigraphy and the ectopic ACTH syndrome – the solution or just another test. Am J Med 1994; 96: 303-4.
  • 15 Duet M, Mundler O, Ajzenberg C. et al. Somatostatin receptor imaging in non-functioning pituitary adenomas: value of an uptake index. Eur J Nucl Med 1994; 21: 647-50.
  • 16 Duet M, Ajzenberg C, Benelhadj S. et al. Somatostatin receptor scintigraphy in pituitary adenomas: a somatostatin receptor density index can predict hormonal and tumoral efficacy of octreotide in vivo. J Nucl Med 1999; 40: 1252-6.
  • 17 Faglia G, Bazzoni N, Spada A. et al. In vivo detection of somatostatin receptors in patients with functionless pituitary adenomas by means of radioiodinated analog of somatostatin ([123I]SDZ 204-090). J Clin Endocrinol Metab 1991; 73: 850-6.
  • 18 Gattinger A, Galvan G. Incidental visualization of pituitary tumors during brain SPECT imaging with Tc-99m HMPAO. Clin Nucl Med 1993; 18: 618-9.
  • 19 Görges R, Cordes U, Engelbach M. et al. Prädiktion der pharmakologischen Wirkung von Octreotid bei Akromegalie mittels 111In-Pentetreotid- Szintigraphie und Berechnung eines hypophysären Uptake-Index. Nuklearmedizin 1997; 36: 117-24.
  • 20 Greenman Y, Woolf P, Coniglio J. et al. Remission of acromegaly caused by pituitary carcinoma after surgical excision of growth hormone secreting metastasis detected by 111-Indium pentetreotide scan. J Clin Endocrinol Metab 1996; 81: 1628-33.
  • 21 Hall WA, Luciano MG, Doppman JL. et al. Pituitary magnetic resonance imaging in normal human volunteers: occult adenomas in the general population. Ann Intern Med 1994; 120: 817-20.
  • 22 Jockenhövel F. Erkrankungen der Hypophyse. In: Jockenhövel F, Gerhards S. (Hrsg). Erkrankungen von Hypothalamus und Hypophyse. Bremen: UniMed Verlag; 2001: 76-103.
  • 23 Jonkhoff AR, Huijgens PC, Schreuder WO. et al. Hypophyseal non-Hodgkin’s lymphoma presenting with clinical panhypopituitarism successfully treated with chemotherapy. J Neuro Oncol 1993; 17: 155-8.
  • 24 Kuwert T, Bartenstein P, Grünwald F. et al. Klinische Wertigkeit der Positronen-Emissions- Tomographie in der Neuromedizin. Positionspapier zu den Ergebnissen einer interdisziplinären Konsensuskonferenz. Nervenarzt 1998; 69: 1045-60.
  • 25 Kwekkeboom DJ, de Herder WW, Krenning EP. Receptor imaging in the diagnosis and treatment of pituitary tumors. J Endocrinol Invest 1999; 22: 80-8.
  • 26 Kwekkeboom D, Krenning EP, de Jong M. Peptide receptor imaging and therapy. J Nucl Med 2000; 41: 1704-13.
  • 27 Lamberts SWJ, Krenning EP, Reubi JC. The role of somatostatin and its analogues in the diagnosis and treatment of tumors. Endocr Rev 1991; 12: 450-82.
  • 28 Lastoria S, Colao A, Vergara E. et al. Technetium- 99m pentavalent dimercaptosuccinic acid imaging in patients with pituitary adenomas. Eur J Endocrinol 1995; 133: 38-47.
  • 29 Lauriero F, Pierangeli E, Rubini G. et al. Pituitary adenomas: The role of 111In-DTPA-octreotide SPECT in the detection of minimal post-surgical residues. Nucl Med Commun 1998; 19: 1127-34.
  • 30 Lucignani G, Losa M, Moresco RM. et al. Differentiation of clinically non-functioning pituitary adenomas from meningiomas and craniopharyngiomas by positron emission tomography with F-18-fluoro-ethyl-spiperone. Eur J Nucl Med 1997; 24: 1149-55.
  • 31 Meyer P, Bohnen NI, Barkan AL. et al. Somatostatinrezeptorszintigraphie bei einem Patienten mit invasivem Makroprolaktinom. Nuklearmedizin 1999; 38: 66-7.
  • 32 Murakami H, Hirose Y, Sagoh M. et al. Probable lymphocytic hypophysitis diagnosed by shortterm serial computed tomography and gallium- 67 scintigraphy. Neurol Med Chir (Tokyo) 1999; 39: 174-8.
  • 33 Nakano T, Asano K, Tanaka M. et al. Use of 201Tl SPECT for evaluation of biologic behavior in pituitary adenomas. J Nucl Med 2001; 42: 575-8.
  • 34 Park CH, Sataloff R, Richard M. et al. Tc-99m- MIBI brain SPECT of cerebellopontine angle tumors. Clin Nucl Med 1996; 21: 375-8.
  • 35 Petrossians P, de Herder W, Kwekkeboom D. et al. Malignant prolactinoma discovered by D2 receptor imaging. J Clin Endocrinol Metab 2000; 85: 398-401.
  • 36 Phlipponneau M, Nocaudie M, Epelbaum J. et al. Somatostatin analogs for the localization and preoperative treatment of an adrenocorticotropin- secreting bronchial carcinoid tumor. J Clin Endocrinol Metab 1994; 78: 20-4.
  • 37 Plöckinger U, Reichel M, Fett U. et al. Preoperative octreotide treatment of growth hormone- secreting and clinically nonfunctioning pituitary macroadenomas: effect on tumor volume and lack of correlation with immunohistochemistry and somatostatin receptor scintigraphy. J Clin Endocrinol Metab 1994; 79: 1416-23.
  • 38 Plöckinger U, Bäder M, Hopfenmüller W. et al. Results of somatostatin receptor scintigraphy do not predict pituitary tumor volume- and hormone-response to octreotide therapy and do not correlate with tumor histology. Eur J Endocrinol 1997; 136: 369-76.
  • 39 Reubi JC, Kvols L, Krenning EP. et al. Distribution of somatostatin receptors in normal and tumor tissue. Metabolism 1990; 39: 78-81.
  • 40 Reubi JC, Krenning E, Lamberts SWJ. et al. In vitro detection of somatostatin receptors in human tumors. Metabolism 1992; 41: 104-10.
  • 41 Royen van EA, Verhoeff NPLG, Meylaerts SAG. et al. Indium-111-DTPA-octreotide uptake measured in normal and abnormal pituitary glands. J Nucl Med 1996; 37: 1449-51.
  • 42 Schmidt M, Scheidhauer K, Luyken C. et al. Somatostatin receptor imaging in intracranial tumours. Eur J Nucl Med 1998; 25: 675-86.
  • 43 Shimizu C, Kubo M, Kijima H. et al. Giant cell granulomatous hypophysitis with remarkable uptake on Gallium-67 scintigraphy. Clin Endocrinol 1998; 49: 131-4.
  • 44 Togawa T, Yui N, Namba H. et al. Pituitary adenoma and cerebral infarction demonstrated by Tc-99m-HMPAO using a high-resolution SPECT system. Clin Nucl Med 1992; 17: 137-8.
  • 45 Verhoeff NPLG, Bemelman FJ, Wiersinga WM. et al. Imaging of dopamine D2 and somatostatin receptors in vivo using single-photon emission tomography in a patient with TSH/PRL-producing pituitary macroadenoma. Eur J Nucl Med 1993; 20: 555-61.
  • 46 Watkinson JC, Lazarus CR, Maisey MN. et al. Tc-99m(V)DMSA: the pituitary sign. Nucl Med Commun 1990; 11: 313-7.
  • 47 Weiss M, Yellin A, Husza’r M. et al. Localization of adrenocorticotropic hormone-secreting bronchial carcinoid tumor by somatostatinreceptor scintigraphy. Ann Intern Med 1994; 121: 198-9.
  • 48 Wilson CB. A decade of pituitary microsurgery. The Herbert Olivecrona lecture. J Neurosurg 1984; 61: 814-33.